Skip to main content
Log in

Temperature programmed reduction of silica supported nickel catalysts

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nickel oxide promoted catalysts are prepared by simple precipitation, precipitation from homogeneous solution and impregnation methods and their reduction behavior is monitored with temperature programmed reduction (TPR) technique. The effect of different parameters such as metal loading, method of preparation and heat treatment temperature are also observed on the reducibility of the catalysts. It is observed that reduction temperature increases with the increase of calcination temperature. Results indicate that the interactions between nickel oxide and silica begin with the increase of calcination temperature which leads to the formation of nickel hydrosilicates and are responsible for high temperature reduction peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gentry SJ, Walsh PT (1982) J Chem Soc Faraday Trans I 78:1515

    Google Scholar 

  2. Jacobs PA, Linart J, Nijs H, Uytterhoeven JB (1977) J Chem Soc Faraday Trans I 73:1745

    Google Scholar 

  3. Afzal M, Khan M, Ahmad H (1991) J Chem Soc Pak 3:619

    Google Scholar 

  4. Afzal M, Khan M, Ahmad H (1991) J Colloid & Polym Sci 2695:483

    Google Scholar 

  5. Wagstaff N, Prins R (1979) J Catal 59:434

    Google Scholar 

  6. Isaacs BH, Peterson EE (1982) 77:43

  7. Jentys A, McHugh BJ, Haller L, Lercher JA (1992) J Phys Chem 96:1324

    Google Scholar 

  8. Lycourghiotis A, Dfosse C, Delannay F, Lamaitre J, Delmon B (1980) J Chem Soc Faraday Trans I 76

  9. Gentry SD, Hurst SW, Jones AM (1981) J Chem Soc Faraday Trans I 77:603

    Google Scholar 

  10. Hurst NW, Gentry SJ, Jones AM, McNicol BD (1982) Catal Rev 24:233

    Google Scholar 

  11. Martin GA, Cephalon N, Montgolfier P (1973) J Chem Phys 70:1422

    Google Scholar 

  12. Ganesan P, DeAngelis RJ, Quality report of surface structure and mechanisms of gasification catalyst deactivation.

  13. Bartholomew CH, Farrauto RJ (1976) J Catal 45:41

    Google Scholar 

  14. Vernon CF, Holn, Alfred C (1968) J Catal 11:306

    Google Scholar 

  15. Bridger GW, Woodward C, Delmon B, Jacobs PA, Ponclete G (1976) Preparation of catalysts. Elsevier Scientific, Amsterdam, p 331

    Google Scholar 

  16. Ercument Z, Falconer L (1982) Applied Catal 365

  17. Bond GC, Sahar PS (1988) Applied Catal 365

  18. Delange JJ, Visser GH (1946) Ingenieur (Utrecht) 58:24

    Google Scholar 

  19. Van EVV, Franzen P (1951) Rec Trav Chim 70:793

    Google Scholar 

  20. Andreas J, Brain J, Gary H, Johanes AL (1992) J Phys Chem 96:1324

    Google Scholar 

  21. Bicek EJ, Kelly G (1967) J Amer Chem Soc Pertoleum. Division Preprints General Papers 12:57

    Google Scholar 

  22. Robertson SD, McNicol BD, DeBass, JH, Kloet SC, Jenkin JW (1975) J Catal 37:424

    Google Scholar 

  23. Unmuth EE, Schwartz LH, Butt JB (1980) 61:242

  24. Reinen D, Selwood PW (1963) J Catal 2:109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, M., Theocharis, C.R. & Karim, S. Temperature programmed reduction of silica supported nickel catalysts. Colloid Polym Sci 271, 1100–1105 (1993). https://doi.org/10.1007/BF00659300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659300

Key words

Navigation