Oxidation of Metals

, Volume 26, Issue 3–4, pp 231–252 | Cite as

Oxidation of commercial purity titanium

  • J. Unnam
  • R. N. Shenoy
  • R. K. Clark
Article

Abstract

The oxidation kinetics of commercial purity Ti-A55 exposed to laboratory air in the 593–760°C temperature range were continuously monitored by thermogravimetric analysis. The oxide thickness was measured by microscopy and the substrate contamination was estimated from microhardness measurements. The microhardness depth profiles were converted to oxygen composition profiles using calibration data. The oxygen diffusion coefficient in alpha-Ti appears to be approximately concentration independent in the 1–10 at. % oxygen range. The combination of an “effective diffusion coefficient” and an “effective solubility” at the oxide-metal interface usefully describes the diffusion process over the entire composition range. A model for the total parabolic oxidation kinetics, accounting for the two individual components, oxide growth and solid solution formation, has been proposed. Diffusion coefficient for oxygen in TiO2 has been estimated as a function of temperature and is found to be about 50 times the value in alpha-Ti. The metallographically prepared cross-sections of the oxidized specimens revealed a “moving boundary” in the substrate, parallel to the oxide-metal interface. This boundary was associated with a specific oxygen level of 5.0±0.5 at.%. It occurred at a distance from the oxide-metal interface which was correlatable with temperature and time of exposure. The diffusion coefficient corresponding to the composition of this moving boundary is in excellent agreement with the effective diffusion coefficient for the substrate contamination.

Key words

oxidation titanium thermogravimetry microhardness modeling 

List of symbols

As

Area underC s vs.X profile, at. % oxygen times cm

Cs

Concentration of oxygen in the alpha-Ti solid solution (see Fig. 1), at. %.

Cz

Concentration of oxygen in the oxide (see Fig. 1), at.%

Do

Frequency factor, cm2 sec−1

Ds

Diffusion coefficient of oxygen in the alpha-Ti solid solution, cm2 sec−1

Dz

Diffusion coefficient of oxygen in the oxide, cm2 sec−1

erfc

Error function complement

KHN

Knoop hardness number (subscripts 5 g and 15 g represent indenter loads)

Q

Activation energy for oxygen diffusion in oxide or in solid solution, cal mol−1

R

Gas constant,=1.987 cal mole−1 deg K−1

r

Oxide growth constant defined by z =rt1/2, cm sec−1/2

T

Temperature, K

t

Time, sec

Wif

Total weight gain per unit area from initial and final weights, g cm−2

Wz

Weight gain per unit area due to oxide growth, g cm−2

Wzs

Total weight gain per unit area due to oxide and solid solution, =w z +w s , g cm−2

X

Distance from oxide-metal interface, cm

Xmbb

Distance of the “moving boundary” from the oxide-metal interface, cm

z

Oxide thickness, cm

Subscripts

if

Obtained from initial and final weights of specimen

l

Solubility limit

mb

Of “moving boundary” in solid-solution

zs

For the oxide plus solid-solution

o

Corresponding to base level

5g

With 5 gram load

15g

With 15 gram load

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Morton and W. M. Baldwin,Trans. Amer. Soc. Met. 44, 1004 (1952).Google Scholar
  2. 2.
    A. E. Jenkins,J. Inst. Met. 82, 213–221 (1953–1954).Google Scholar
  3. 3.
    J. E. Reynolds, H. R. Ogden, and R. I. Jaffee,Trans. ASM 49, 280–299 (1957).Google Scholar
  4. 4.
    S. Andersson, B. Collen, U. Kuylenstierna, and A. Magneli,Acta. Chem. Scand. 11, 1641–1652 (1957).Google Scholar
  5. 5.
    P. Kofstad, K. Hauffe, and H. Kjollesdall,Acta. Chem. Scand. 12(2), 239–266 (1958).Google Scholar
  6. 6.
    J. Stringer,Acta. Met. 8, 758–766 (1960).Google Scholar
  7. 7.
    T. Hurlen,J. Inst. Met. 89m, 128–136 (1960–1961).Google Scholar
  8. 8.
    C. E. Shamblen and T. K. Redden,The Science, Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds. (Pergamon Press, New York, 1968), pp. 199–208.Google Scholar
  9. 9.
    C. J. Rosa,Metall. Trans.,1, 2517–2522 (1970).Google Scholar
  10. 10.
    L. E. Dunbar, A. F. Mills, G. H. Burghart, and R. M. Clever, 2nd AIAA/ASME Thermophysics Conf., 1978, Paper No. 78–867.Google Scholar
  11. 11.
    J. E. L. Gomes and A. M. Huntz,Oxid. Met. 14(6), 471–498 (1980).Google Scholar
  12. 12.
    M. Hansen,Constitution of Binary Alloys, 2nd edition (McGraw-Hill Book Company, New York, 1958), p. 1069.Google Scholar
  13. 13.
    C. Wagner,Diffusion in Solids, Liquids, Gases, W. Jost, ed. (Academic Press, New York, 1952), p. 71.Google Scholar
  14. 14.
    J. Debuigne and P. Lehr,Rev. Met. 60, 911 (1963).Google Scholar
  15. 15.
    G. R. Wallwork, W. W. Smeltzer, and C. J. Rosa,Acta Met. 12, 409 (1964).Google Scholar
  16. 16.
    K. E. Wiedemann and J. Unnam, An X-Ray Diffraction Study of Titanium Oxidation, TMS-AIME Paper No. F84-14, 1984.Google Scholar
  17. 17.
    R. P. Elliott,Constitution of Binary Alloys, First Supplement (McGraw-Hill Book Company, New York, 1965), p. 697.Google Scholar
  18. 18.
    R. N. Blumenthal and D. H. Whitmore,J. Electrochem. Soc. 110, 92 (1963).Google Scholar
  19. 19.
    J. S. Andersen and A. S. Khan,J. Less-Common Met. 22, 219 (1970).Google Scholar
  20. 20.
    B. C. H. Steele and S. Zador, Ph.D. Thesis (S. Zador) University of London, 1969.Google Scholar
  21. 21.
    P. Kofstad,Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley Interscience, New York, 1972), pp. 141.Google Scholar
  22. 22.
    J. Crank,The Mathematics of Diffusion (Oxford University Press, London, 1964).Google Scholar
  23. 23.
    Robert C. Weast, ed.,Hand Book of Chemistry and Physics, 52nd edition (The Chemical Rubber Company, Cleveland, OH, 1971–1972), p. B-150.Google Scholar
  24. 24.
    P. Kofstad, P. B. Anderson, and O. J. Krudtaa,J. Less-Common Met. 3, 89–97 (1961).Google Scholar
  25. 25.
    K. E. Wiedemann, MS Thesis, Virginia Polytechnic Institute and State University, 1983.Google Scholar
  26. 26.
    D. David, E. A. Garcia, X. Lucas, and G. Beranger,C.R. Acad. Sc., Paris t.287, 125–128 (1978).Google Scholar
  27. 27.
    E. Bisogni, G. Mah, and C. Wert,J. Less-Common Met. 7, 197 (1964).Google Scholar
  28. 28.
    C. J. Rosa,Metall. Trans.,1, 2517–2522 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. Unnam
    • 1
  • R. N. Shenoy
    • 1
  • R. K. Clark
    • 2
  1. 1.Analytical Services and Materials, Inc.Hampton
  2. 2.NASA Langley Research CenterHampton

Personalised recommendations