Astrophysics and Space Science

, Volume 207, Issue 1, pp 151–159 | Cite as

On gravitational radiation from binary systems

(Letter to the Editor)
  • Yu-Qing Lou
  • Zu-Hui Fan
Article
  • 35 Downloads

Abstract

We discuss gravitational radiation from a neutral mass particle within a bound orbit in the background Schwarzschild metric. We compare the power loss of gravitational radiation according to this formalism with the heuristic quadrupole radiation formula as applied to a binary system. There are evidence and compelling reasons to believe that the quadrupole formula is valid even in a fairly strong gravitational field, although its fully consistent analytical derivation is not yet known. In particular, we emphasize that the application of the quadrupole formula to the binary pulsar system PSR 1913+16 as well as other binary pulsars, which are weakly bound by gravity, is well justified.

Keywords

Radiation Binary System Gravitational Field Mass Particle Power Loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen, J.M.: 1970,Astrophys. J. 161, 103.Google Scholar
  2. Bertotti, B., de Felice, F. and Pascolini, A. (eds.): 1984,General Relativity and Gravitation, D. Reidel, Dordrecht.Google Scholar
  3. Burke, W. L.: 1971,J. Math. Phys. 12, 401.Google Scholar
  4. Carter, B. and Hartle, J.B. (eds.): 1986,Gravitation in Astrophysics, NATO ASI Series, Plenum Press, New York.Google Scholar
  5. Chandrasekhar, S.: 1983,The Mathematical Theory of Black Holes, Oxford University Press, Oxford.Google Scholar
  6. Chandrasekhar, S. and Esposito F.P.: 1970,Astrophys. J. 160, 153.Google Scholar
  7. Damour, T.: 1983,Phys. Rev. Lett. 51, 1019.Google Scholar
  8. Damour, T.: 1987, in: B. Carter and J.B. Hartle (eds.),Gravitation in Astrophysics, NATO ASI Series, Plenum Press, New York, pp. 3–63.Google Scholar
  9. Damour, T.: 1989, in: D.G. Blair, M.J. Buckingham, and R. Ruffini (eds.),Proc. of the Fifth Marcel Grossnann Meeting on General Relativity, World Scientific Pub., Singapore, pp. 257–264.Google Scholar
  10. Damour, T. and Taylor, J.H.: 1991,Astrophys. J. 366, 501.Google Scholar
  11. Davis, M.et al.: 1972,Phys. Rev. Lett. 28, 1352.Google Scholar
  12. Deruelle, N. and T. Piran (eds.): 1983,Gravitational Radiation, North-Holland, Amsterdam.Google Scholar
  13. Detweiler, S. L.: 1977,Proc. Roy. Soc. Lond. A 352, 381.Google Scholar
  14. Detweiler, S. L.: 1978,Astrophys. J. 225, 687.Google Scholar
  15. Detweiler, S. L.: 1980,Astrophys. J. 239, 292.Google Scholar
  16. Ehlers, J.et al.: 1976,Astrophys. J. Lett. 208, 77.Google Scholar
  17. Ehlers, J. and Walker, M.: 1984, in: B. Bertotti, F. de Felice, and A. Pascolini (eds.),General Relativity and Gravitation, D. Reidel, Dordrecht, pp. 125–137.Google Scholar
  18. Goldman, I.: 1992,Astrophys. J. 390, 494.Google Scholar
  19. Hulse, R.A. and Taylor, J. H.: 1975,Astrophys. J. Lett. 195, 51.Google Scholar
  20. Iyer, B.R. and Will, C. M.: 1993,Phys. Rev. Lett. 70, 113.Google Scholar
  21. Kerr, R.P.: 1963,Phys. Rev. Lett. 11, 237.Google Scholar
  22. Kleppner, D.: 1993,Physics Today 46, 9.Google Scholar
  23. Landau, L.D. and Lifshitz, E. M.: 1971,The Classical Theory of Fields, Pergamon Press, Oxford.Google Scholar
  24. Manchester, R.N.: 1992, in:The Sixth Marcel Grossmann Meeting on General Relativity, (preprint).Google Scholar
  25. Misner, C.W., Thorne, K.S., and Wheeler, J.A.: 1973,Gravitation, Freeman, San Franscisco.Google Scholar
  26. Oohara, K. and Nakamura, T.: 1984,Progr. Theoret. Phys. 71, 91.Google Scholar
  27. Peters, P.C. and Mathews, J.: 1963,Phys. Rev. 131, 435.Google Scholar
  28. Press, W.H.: 1971,Astrophys. J. Lett. 170, 105.Google Scholar
  29. Press, W.H. and Teukolsky, S. A.: 1973,Astrophys. J. 185, 649.Google Scholar
  30. Schafer, G.: 1982,Prog. Theor. Phys. 68, 2191.Google Scholar
  31. Schattner, R.: 1978,Gen. Rel. Grav. 10, 395.Google Scholar
  32. Taylor, J.H. and Weisberg, J. M.: 1989,Astrophys. J. 345, 434.Google Scholar
  33. Taylor, J.H.et al.: 1992,Nature 355, 132.Google Scholar
  34. Teukolsky, S.A.: 1973,Astrophys. J. 185, 635.Google Scholar
  35. Thorne, K.S.: 1980,Rev. Mod. Phys. 52, 285.Google Scholar
  36. Wald, R.M.: 1984,General Relativity, The Univ. of Chicago Press, Chicago.Google Scholar
  37. Wald, R.M.: 1987, in: M.P. Ulmer (ed.),Thirteenth Texas Symposium on Relativistic Astrophysics, World Scientific Pub., Singapore, pp. 107–116.Google Scholar
  38. Will, C.M.: 1986,Can. J. Phys. 64, 140.Google Scholar
  39. Will, C.M. and Zaglauer, H. W.: 1989,Astrophys. J. 346, 366Google Scholar
  40. Yu, A.: 1992,Astrophys. and Space Sci. 194, 159.Google Scholar
  41. Zel'dovich, Ya.B. and Novikov, I.D.: 1971,Relativisitic Astrophysics Vol. 1, Stars and Relativity, Izdatel'stvo “Nauka”, Moscow, (The Univ. of Chicago Press, English Translation).Google Scholar
  42. Zerilli, F.J.:1970 Phys. Rev. D 2, 2141.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Yu-Qing Lou
    • 1
  • Zu-Hui Fan
    • 2
  1. 1.Department of Astronomy and AstrophysicsThe University of ChicagoUSA
  2. 2.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations