Skip to main content
Log in

Electrical properties of exchange-enhanced systems: Fe in (Pd95Rh5)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The electrical resistivity of the giant moment system Pd95Rh5 containing between 0.8 and 1.85 at % Fe has been measured from 1.4 to 300 K. The incremental resistivity in alloys containing more than 1.25 at % Fe is found to exhibit aT 2 limiting low-temperature form; however for the 0.8 and 1.1 at % Fe alloys such aT 2 form is not clearly discernible, with Δρ(T) exhibiting a temperature dependence intermediate betweenT 2 andT 3/2. The former result is predicted from conduction electron-magnon scattering for which wave vector conservation holds, from which it is inferred that the criterion for wave vector conservation in this type of alloy isnot determined by mean free path effects. Estimates of the acoustic spin-wave stiffnessD are derived from the measuredT 2 coefficients. These resistivity data also enable estimates of the exchange coupling parameterJ s-local to be made. The magnetic ordering temperatureT c is considerably less discernible than in single-component hosts but approximate values have been derived for the various alloys, from which estimates of the exchange coupling parameterJ d-local have been made. In the disordered phase the measured incremental resistivity is found to contain a term which decreases approximately linearly with increasing temperature, at a rate of −(1.1±0.45)10−3 µΩ cm/K at % Fe. Using existing pressure data on both Pd- and PdRh-based alloys, it is shown that both the sign and magnitude of this term can be accounted for in terms of the volume dependence of the potential and exchange terms, in conjunction with a large coefficient of thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Crangle,Phil. Mag. 5, 335 (1960).

    Google Scholar 

  2. A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams, E. Corenzwit, and R. C. Sherwood,Phys. Rev. 125, 541 (1962).

    Google Scholar 

  3. S. Doniach and E. P. Wohlfarth,Proc. Roy. Soc. (London)295A, 442 (1967).

    Google Scholar 

  4. H. S. D. Cole and R. E. Turner,J. Phys. C 2, 124 (1969).

    Google Scholar 

  5. Gwyn Williams,Phys. Rev. B 5, 236 (1972).

    Google Scholar 

  6. Gwyn Williams, G. A. Swallow, and J. W. Loram,Phys. Rev. B 7, 257 (1973).

    Google Scholar 

  7. Gwyn Williams and J. W. Loram,J. Phys. Chem. Solids 30, 1827 (1969).

    Google Scholar 

  8. Gwyn Williams and J. W. Loram,Solid State Commun. 7, 1261 (1969).

    Google Scholar 

  9. Gwyn Williams,J. Phys. Chem. Solids 31, 529 (1970).

    Google Scholar 

  10. G. J. Nieuwenhuys and B. M. Boerstoel,Phys. Letters 33A, 281 (1970).

    Google Scholar 

  11. S. Skalski, M. P. Kawatra, J. A. Mydosh, and J. I. Budnick,Phys. Rev. B 2, 3613 (1970).

    Google Scholar 

  12. M. E. Colp and Gwyn Williams,Phys. Rev. B 5, 2599 (1972).

    Google Scholar 

  13. D. L. Mills, A. Fert, and I. A. Campbell,Phys. Rev. B 4, 196 (1971).

    Google Scholar 

  14. P. D. Long and R. E. Turner,J. Phys. C. Suppl. 3, S127 (1970).

    Google Scholar 

  15. Gwyn Williams,Solid State Commun. 8, 1451 (1970).

    Google Scholar 

  16. I. Manari,Progr. Theoret. Phys. (Kyoto)22, 335 (1959).

    Google Scholar 

  17. I. Kasuya,Progr. Theoret. Phys. (Kyoto)22, 227 (1959).

    Google Scholar 

  18. T. Moriya, inProc. Int. School of Physics, Enrico Fermi, Course XXXVII, W. Marshall, ed. (Academic Press, New York, 1967).

    Google Scholar 

  19. A. D. C. Grassie, G. A. Swallow, Gwyn Williams, and J. W. Loram,Phys. Rev. B 3, 4154 (1971).

    Google Scholar 

  20. H. G. Purwins, Y. Talmor, J. Sierro, and F. T. Hedgcock,Solid State Commun. 11, 361 (1972).

    Google Scholar 

  21. J. A. Rowlands, D. Greig, and P. Blood,J. Phys. F 1, L29 (1971).

  22. J. A. Mydosh, J. I. Budnick, M. P. Kawatra, and S. Skalski,Phys. Rev. Letters 21, 1346 (1968).

    Google Scholar 

  23. R. M. Roshko and Gwyn Williams, to be published.

  24. J. W. Loram, Gwyn Williams, and G.A. Swallow,Phys. Rev. B 3, 3060 (1971).

    Google Scholar 

  25. G. Chouteau and R. Tournier,J. de Physique 1, C1-1002 (1971).

    Google Scholar 

  26. G. G. Low and T. M. Holden,Proc. Phys. Soc. (London)89, 119 (1966).

    Google Scholar 

  27. I. A. Campbell, A. D. Caplan, and C. Rizzuto,Phys. Rev. Letters 26, 239 (1971).

    Google Scholar 

  28. D. J. Kim,Phys. Rev. 149, 434 (1966).

    Google Scholar 

  29. S. Foner and E. J. McNiff,Phys. Letters 29A, 28 (1969).

    Google Scholar 

  30. D. W. Budworth, F. E. Hoare, and J. Preston,Proc. Roy. Soc. (London)A 257, 250 (1961).

    Google Scholar 

  31. J. J. Vuillemin,Phys. Rev. 144, 396 (1966).

    Google Scholar 

  32. K. Yosida,Phys. Rev. 107, 396 (1957).

    Google Scholar 

  33. M. Peter, J. Dupraz, and H. Cotlet,Helv. Phys. Acta 40, 301 (1967).

    Google Scholar 

  34. J. Kondo,Progr. Theoret. Phys. (Kyoto)32, 37 (1964).

    Google Scholar 

  35. P. Lederer and D. L. Mills,Phys. Rev. 165 837 (1968).

    Google Scholar 

  36. A. B. Kaiser and S. Doniach,Int. J. Mag. 1, 11 (1970).

    Google Scholar 

  37. N. Rivier and V. Zlatic,J. Phys. F 2, L99 (1972).

  38. H. Nagasawa,Solid State Commun. 10, 33 (1972).

    Google Scholar 

  39. J. Souletie,J. Low Temp. Phys. 7, 141 (1972).

    Google Scholar 

  40. J. W. Loram, R. J. White, and A. D. C. Grassie,Phys. Rev. B 5, 3659 (1972).

    Google Scholar 

  41. F. C. C. Kao, M. E. Colp, and Gwyn Williams,Phys. Rev. B 7, 267 (1973).

    Google Scholar 

  42. B. R. Coles,Phys. Letters 8, 243 (1964).

    Google Scholar 

  43. J. Bass,Adv. Phys. 21, 431 (1972).

    Google Scholar 

  44. J. S. Dugdale and Z. S. Basniski,Phys. Rev. 157, 552 (1967).

    Google Scholar 

  45. E. Fawcett,Phys. Rev. B 3, 3023 (1971).

    Google Scholar 

  46. E. Fawcett, D. B. McWhan, R. C. Sherwood, and M. P. Sarachik,Solid State Commun. 6, 509 (1968).

    Google Scholar 

  47. J. G. Collins and G. K. White,Progress in Low Temperature Physics, Vol. IV, C. J. Gorter, ed. (North-Holland, Amsterdam, 1964), p. 465.

    Google Scholar 

  48. F. C. Nix and D. MacNair,Phys. Rev. 61, 74 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported in part by the Defence Research Board under Grant No. 9510-100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colp, M.E., Roshko, R.M. & Williams, G. Electrical properties of exchange-enhanced systems: Fe in (Pd95Rh5). J Low Temp Phys 17, 203–221 (1974). https://doi.org/10.1007/BF00659070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659070

Keywords

Navigation