Oxidation of Metals

, Volume 30, Issue 5–6, pp 405–418 | Cite as

Metal oxidation: An electrochemical perspective

  • J. M. Bailey
  • I. M. Ritchie
Article

Abstract

A general electrochemical theory for the oxidation of metals is presented. The oxidizing metal is viewed as a self-driving electrochemical cell in which the oxide acts as both ionic and electronic conductor. The irreversibility of each of the charge-transfer steps in the reaction mechanism is expressed in terms of an overpotential, the sum of these being equal to the Gibbs free-energy change accompanying the reaction. From this equality, it is possible to calculate the reaction rate as a function of the change in free energy and of such system parameters as oxide conductivity. It is shown that the Wagner theory and the Mott-Cabrera theory can be derived as special cases of the general electrochemical theory. The common basis for the Wagner theory and the Hoar-Price theory of parabolic oxidation is also demonstrated.

Key words

metal oxidation Wagner theory Mott-Cabrera theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Fromhold, Jr.,Theory of Metal Oxidation; Vol. 1:Fundamentals (North-Holland, Amsterdam, 1976).Google Scholar
  2. 2.
    A. T. Fromhold, Jr.,Theory of Metal Oxidation, Vol. 2:Space Charge (North-Holland, Amsterdam, 1980).Google Scholar
  3. 3.
    C. Wagner,Z. Phys. Chem. Abt. B 21, 25 (1933).Google Scholar
  4. 4.
    C. Wagner,Z. Phys. Chem. Abt. B 32, 447 (1936).Google Scholar
  5. 5.
    N. Cabrera and N. F. Mott,Rep. Prog. Phys. 12, 163 (1948–1949).Google Scholar
  6. 6.
    T. P. Hoar and L. E. Price,Trans. Faraday Soc. 34, 867 (1938).Google Scholar
  7. 7.
    W. Jost,Diffusion in Solids, Liquids and Gases (Academic Press, New York, 1952).Google Scholar
  8. 8.
    O. H. Hamilton and H. A. Miley,Trans. Electrochem. Soc. 81, 413 (1942).Google Scholar
  9. 9.
    D. H. Bradhurst, J. E. Draley, and C. J. Van Drunen,J. Electrochem. Soc. 112, 1171 (1965).Google Scholar
  10. 10.
    K. J. Vetter,Electrochemical Kinetics: Theoretical and Experimental Aspects (Academic Press, New York, 1967).Google Scholar
  11. 11.
    J. O'M. Bockris and A. K. N. Reddy,Modern Electrochemistry, Vol. 2, (Plenum, New York, 1970), p. 1370.Google Scholar
  12. 12.
    U. R. Evans,Rev. Pure Appl. Chem. 5, 1 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • J. M. Bailey
    • 1
  • I. M. Ritchie
    • 1
  1. 1.Department of Physical and Inorganic ChemistryUniversity of Western AustraliaNedlands

Personalised recommendations