Journal of Low Temperature Physics

, Volume 28, Issue 1–2, pp 129–137 | Cite as

Binding energy of Wannier excitons in polar semiconductors: Thallium halides

  • M. Matsuura
  • C. Mavroyannis
Article

Abstract

Using the effective potential and the Coulomb Green's function, the ground (1S) state energy of the Wannier exciton in polar semiconductors is calculated. The present method may be applied to both direct and indirect excitons and yield the upper bound of the true ground-state energy. The calculated binding energy of both direct and indirect excitons in thallium halides agrees reasonably well with the experiment when use is made of mass parameters consistent with recent results of cyclotron resonance experiments and the determination of the indirect transition.

Keywords

Binding Energy Halide Present Method Thallium Effective Potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Haken, inPolaron and Exciton, C. G. Kuper and G. D. Whitfield, eds. (Oliver and Boyd, London, 1963).Google Scholar
  2. 2.
    R. Z. Bachrach and F. C. Brown,Phys. Rev. B 1, 818 (1970).Google Scholar
  3. 3.
    K. Shindo,J. Phys. Soc. Japan 29, 287 (1970).Google Scholar
  4. 4.
    S. D. Mahanti and C. M. Varma,Phys. Rev. Lett. 25, 1115 (1970);Phys. Rev. B 6, 2209 (1972).Google Scholar
  5. 5.
    J. Sak,Phys. Rev. B 6, 2226 (1972).Google Scholar
  6. 6.
    J. G. Vooght and K. K. Bajaj,Phys. Rev. B 7, 1472 (1973).Google Scholar
  7. 7.
    G. Mahler and U. Schröder,Phys. Stat. Sol. 61, 629 (1974).Google Scholar
  8. 8.
    S. Wang and M. Matsuura,Phys. Rev. B 10, 3330 (1974).Google Scholar
  9. 9.
    J. Pollman and H. Büttner,Solid State Commun. 17, 1171 (1975).Google Scholar
  10. 10.
    J. W. Hodby, G. T. Jenkin, K. Kobayashi, and H. Tamura,Solid State Commun. 10, 1017 (1972).Google Scholar
  11. 11.
    J. Nakahara, K. Kobayashi, and A. Fujii,J. Phys. Soc. Japan 37, 1312 (1974).Google Scholar
  12. 12.
    H. Haken,Z. Phys. 147, 323 (1957);155, 223 (1959).Google Scholar
  13. 13.
    L. Hostler and R. Pratt,Phys. Rev. Lett. 10, 469 (1963); L. Hostler,J. Math. Phys. 5, 591 (1964); M. H. Engineer and N. Tzor,Phys. Rev. B 5, 3029 (1972); M. Matsuura and S. Wang,Solid State Commun. 15, 613 (1974).Google Scholar
  14. 14.
    M. Abramowitz and I. Stegun, eds.,Handbook of Mathematical Functions (Dover, New York, 1965).Google Scholar
  15. 15.
    M. Matsuura and S. Wang,Solid State Commun. 14, 533 (1974).Google Scholar
  16. 16.
    H. Overhof and J. Treush,Solid State Commun. 9, 53 (1971); M. Inoue and M. Okazaki,J. Phys. Soc. Japan 31, 1313 (1971); J. Overton and J. P. Hernandez,Phys. Rev. B 7, 778 (1973).Google Scholar
  17. 17.
    S. Kurita and K. Kobayashi,J. Phys. Soc. Japan 30, 1645 (1971).Google Scholar
  18. 18.
    E. Haga,Prog. Theor. Phys. 13, 555 (1955).Google Scholar
  19. 19.
    P. Sheng and J. D. Dow,Phys. Rev. B 4, 1343 (1971).Google Scholar
  20. 20.
    R. S. Knox,Theory of Excitons (Academic, New York, 1963); A. Baldeveshi and N. O. Lipari,Phys. Rev. B 3, 439 (1971).Google Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • M. Matsuura
    • 1
    • 2
  • C. Mavroyannis
    • 2
  1. 1.Department of Applied Science, Faculty of EngineeringYamaguchi UniversityUbeJapan
  2. 2.Division of ChemistryNational Research Council of CanadaOttawaCanada

Personalised recommendations