Colloid and Polymer Science

, Volume 274, Issue 1, pp 20–26 | Cite as

A simple formula for the temperature dependence of the relaxation frequency in glassy systems

  • Ing K. Liedermann
Original Contribution

Abstract

A simple,five-parameter empirical formula for the temperature dependence of the relaxation frequency is presented. It is shown that this formula reduces to the Arrhenius equation at higher temperatures and to the Vogel-Fulcher-Tamman equation at lower temperatures. Apart from parameters which may be obtained independently from either equation the proposed formula contains an additional parameter describing the sharpness of the transition between the regions of validity of Arrhenius or Vogel-Fulcher-Tamman equation. The applicability of the formula is tested on dielectric relaxation data of acrylic polymers and on other dielectric data available in the literature. The physical meaning of individual parameters is discussed.

Key words

Relaxation temperature dependence acrylates dielectric(s) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Macdonald JR (1987) J Appl Phys 61: 700–713Google Scholar
  2. 2.
    Fredrickson GH (1988) Ann Rev Phys Chem 39:149–180Google Scholar
  3. 3.
    Garcia-Colin LS, del Castillo LF, Goldstein P (1989) Phys Rev B 40: 7040–7044Google Scholar
  4. 4.
    Götze W (1990) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, Freezing and the Glass Transition, North-Holland, 1991.Google Scholar
  5. 5.
    Ngai KL (1991) J Non-Cryst Sol 131–133:80–83Google Scholar
  6. 6.
    Donth E-J, Relaxation and Thermodynamics in Polymers, Academic Verlag, Berlin, 1992Google Scholar
  7. 7.
    Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701Google Scholar
  8. 8.
    Ngai KL, Roland MC (1993), Macromolecules 26:6824–6830Google Scholar
  9. 9.
    Cohen MH, Crest GS (1984), J Non-Cryst Sol 61–62:749–759Google Scholar
  10. 10.
    Schönhals A, Kremer F, Hofmann A, Fischer EW, Schlosser E (1993), Phys Rev Lett 70:3459–3462Google Scholar
  11. 11.
    Harviliak S, Negami S (1966) J Polymer Sci C 14:89Google Scholar
  12. 12.
    Havriliak S, Negami S (1967) Polymer 8:161Google Scholar
  13. 13.
    Kroschwitz JI, Concise Encyclopaedia of Polymer Science and Engineering, New York, J. Wiley, 1990Google Scholar
  14. 14.
    Zetsche A, Kremer F, Jung W (1990) Polymer 31:1883–1887Google Scholar
  15. 15.
    Meier G, Gerharz B, Boese D, Fischer EW (1991) J Chem Phys 94:3050–3059Google Scholar
  16. 16.
    Kremer F, Boese D, Meier G, Fischer EW (1989) Progr Coll Polym Sci 80:129–139Google Scholar
  17. 17.
    Schönhals A, Kremer F, Schlosser E (1991) Phys Rev Lett 67:999–1002Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • Ing K. Liedermann
    • 1
  1. 1.Department of Physics Faculty of Electrical Engineering and InformaticsTechnical University of BrnoBrnoCzech Republic

Personalised recommendations