Astrophysics and Space Science

, Volume 164, Issue 2, pp 183–191 | Cite as

The propagation of weakly nonlinear waves in a plasma including low-pressure cosmic rays

  • S. V. Chalov


A multiple-scales method is used to derive an equation describing the time evolution of weakly nonlinear plane waves in a thermal plasma, including low-pressure cosmic rays. The shock formation problem as result of nonlinear steepening is examined in detail. It is shown that a wave whose wavelength exceeds a certain limit will be damped without the formatin of a discontinuity.


Time Evolution Plane Wave Formation Problem Nonlinear Wave Thermal Plasma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berezhko, E. G.: 1986,Pis'ma v Astron. Zh. 12, 842 (in Russian).Google Scholar
  2. Chalov, S. V.: 1988,Astrophys. Space Sci. 148, 175.Google Scholar
  3. Dorfi, E. A. and Drury, L. O'C.: 1985,Proc. 19th Int. Cosmic Ray Conf., La Jolla 3, 121.Google Scholar
  4. Drury, L. O.'C.: 1984,Adv. Space Res. 4, 185.Google Scholar
  5. Drury, L. O.'C. and Falle, S. A. E. G.: 1986,Monthly Notices Roy. Astron. Soc. 223, 353.Google Scholar
  6. Leibovich, S. and Seebass, A. R.: 1974, in S. Leibovich and A. R. Seebass (eds.),Nonlinear Waves, Cornell Univ. Press, Ithaca and London, p. 113.Google Scholar
  7. Ptuskin, V. S.: 1981,Astrophys. Space Sci. 76, 265.Google Scholar
  8. Webb, G. M. and McKenzie, J. F.: 1984,J. Plasma Phys. 31, 337.Google Scholar
  9. Zank, G. P.: 1988a,Astrophys.Space Sci. 140, 301.Google Scholar
  10. Zank, G. P.: 1988b,J. Plasma Phys. 39, 539.Google Scholar
  11. Zank, G. P. and McKenzie, J. F.: 1985,Proc. 19th Int. Cosmic Ray Conf., La Jolla 3, 111.Google Scholar
  12. Zank, G. P., Webb, G. M., and McKenzie, J. F.: 1988,Astron. Astrophys. 127, 97.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • S. V. Chalov
    • 1
  1. 1.Institute for Problems in MechanicsMoscowU.S.S.R.

Personalised recommendations