Skip to main content
Log in

Radiative source-function predictions for finite and semi-infinite non-conservative atmospheres

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The probabilistic method of Sobolev and Case's method of normal mode expansion are combined to predict source-function distributions for radiative transfer in non-conservative, planeparallel atmospheres. The solutions obtained for semi-infinite atmospheres are exact and can be expressed in terms of functions and parameters associated with the non-conservative Milne problem. The predictions for finite atmospheres are approximate and are constructed from the semi-infinite solutions. Tabular values of the requisite functions and parameters are provided to facilitate rapid numerical evaluation of the solutions. Although the finite solutions corresponds to the zeroth-order (optically thick) approximation by Case's method, an assessment of the accuracy indicates that the results are useful for optical thicknesses as small as one or even less. The close connection between the results obtained and the method of point-direction gain of Van de Hulst is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambartsumian, V. A.: 1943, ‘Diffuse Reflection of Light by a Foggy Medium’,C. R. Dokl. Akad. Sci. URSS 38, 229–232.

    MathSciNet  Google Scholar 

  • Bellman, R., andKalaba R.: 1956, ‘On the Principle of Invariant Imbedding and Propagation through Inhomogeneous Media’,Proc. Natl. Acad. Sci. 42, 629–632.

    Article  ADS  MathSciNet  Google Scholar 

  • Bellman, R., Kagiwada, H., andKalaba, R.: 1966, ‘Numerical Results for the Auxiliary Equation of Radiative Transfer’,J. Quant. Spectry. Radiative Transfer 6, 291–310.

    Article  ADS  Google Scholar 

  • Bellman, R. E., Kagiwada, H. H., Kalaba, R. E., andPrestrud, M. C.: 1964a,Invariant Imbedding and Time-Dependent Transport Processes. American Elsevier, New York.

    MATH  Google Scholar 

  • Bellman, R., Kalaba, R., andUeno, S.: 1964b, ‘Invariant Imbedding and a Resolvent of the Photon Diffusion Equation’. Rept. RM-3937-ARPA, The RAND Corporation.

  • Busbridge, I. W.: 1960,The Mathematics of Radiative Transfer, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Carlstedt, J. L. andMullikin, T. W. 1966, ‘Chandrasekhar's X- and Y-functions’,Astrophys. J. Suppl. Ser. 12, No. 113, 449–585.

    Article  ADS  Google Scholar 

  • Case, K. M.: 1960, ‘Elementary Solutions of the Transport Equation and their Applications’,Ann. Phys. 9, 1–23.

    Article  ADS  MathSciNet  Google Scholar 

  • Case, K. M., Hoffmann, F. de, andPlaczek, G.: 1953,Introduction to the Theory of Neutron Diffusion. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Chandrasekhar, S.: 1950,Radiative Transfer, Oxford University Press, London. Also Dover, New York (1960).

    MATH  Google Scholar 

  • Davison, B., withSykes, J. B.: 1958,Neutron Transport Theory. Oxford University Press, London.

    MATH  Google Scholar 

  • Heaslet, M. A. andWarming, R. F.: 1965a, ‘Application of Invariance Principles to a Radiative Transfer Problem in a Homogeneous Spherical Medium’,J. Quant. Spectry. Radiative Transfer 5, 669–682

    Article  ADS  Google Scholar 

  • Heaslet, M. A. andWarming, R. F.: 1965b, ‘Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium’,Intern. J. Heat Mass Transfer,8, 979–994.

    Article  Google Scholar 

  • Heaslet, M. A. andWarming, R. F.: 1967, ‘Radiative Transport in an Absorbing Planar Medium. II: Predictions of Radiative Source Functions’,Intern. J. Heat, Mass Transfer,10, 1413–1427.

    Article  Google Scholar 

  • Henyey, L. G. andGreenstein, J. L.: 1941, ‘Diffuse Radiation in the Galaxy’,Astrophys. J. 93, 70–83.

    Article  ADS  Google Scholar 

  • Horak, H. G.: 1952, ‘The Transfer of Radiation by an Emitting Atmosphere’,Astrophys. J. 116, 470–490.

    Article  MathSciNet  Google Scholar 

  • King, J. I. F.: 1956, ‘Radiative Equilibrium of a Line-Absorbing Atmosphere, II’,Astrophys. J. 124, 272–297.

    Article  ADS  MathSciNet  Google Scholar 

  • Kourganoff, V.: 1952,Basic Methods in Transfer Problems, Oxford University Press, London. Also Dover, New York (1963).

    MATH  Google Scholar 

  • Kuščer, I.: 1953, ‘Penetration of Radiation through a Thick Slab of Isotropically Scattering Material’,Can. J. Phys. 31, 1187–1188.

    Article  ADS  Google Scholar 

  • Kuščer, I., McCormick, N. J., andSummerfield, G. C.: 1964, ‘Orthogonality of Case's Eigenfunctions in One-Speed Transport Theory’,Ann. Phys. 30, 411–421.

    Article  ADS  MathSciNet  Google Scholar 

  • Kuznetsov, Ye. S. andOvchinskiy, B. V.: 1949, ‘Numerical Solution of an Integral Equation on the Theory of Light Scattering in the Atmosphere’,Trudi Geophys. Inst. No.4, 1–103. Also NASA TT F-372, 1965.

    Google Scholar 

  • Le Caine, J.: 1950, ‘The Neutron Density near a Plane Surface in a Capturing Medium’,Can. J. Res. A 28, 242–267.

    MathSciNet  Google Scholar 

  • McCormick, N. J.: 1967, ‘On the Formulae for Chandrasekhar's X- and Y-Functions in Thick Atmospheres’,Astrophys. J. 147, 816–817.

    Article  ADS  Google Scholar 

  • McCormick, N. J. andMendelson, M. R.: 1964, ‘Transport Solution of the One-Speed Slab Albedo Problem’,Nucl. Sci. Eng. 20, 462–467.

    Article  Google Scholar 

  • Mendelson, M. R.: 1964,Solutions of the One-Speed Neutron Transport Equation in Plane Geometry. Ph.D. thesis, University of Michigan.

  • Minin, I. N.: 1958, ‘On the Theory of Diffusion of Radiation in a Semi-Infinite Medium’,Soviet Phys. ‘Doklady’ (English Transl.)3, 535–537.

    ADS  MathSciNet  MATH  Google Scholar 

  • Pomraning, G. C. andLathrop, K. D.: 1967, ‘The Extrapolated End Point for the Milne Problem’,Mucl. Sci. Eng. 29, 305–308.

    Google Scholar 

  • Shure, F. andNatelson, M.: 1964, ‘Anisotropic Scattering in Half-Space Transport Problems’,Ann. Phys. 26, 274–291.

    Article  ADS  MathSciNet  Google Scholar 

  • Sobolev, V. V.: 1963,A Treatise on Radiative Transfer. Van Nostrand, New York.

    Google Scholar 

  • Sobolev, V. V.: 1964, ‘Diffusion of Radiation in a Plane Lamina of Large Optical Thickness’,Soviet Phys. ‘Doklady’ (English Transl.)9, 222–224.

    ADS  Google Scholar 

  • Sobouti, Y.: 1963, ‘Chandrasekhar's X-, Y- and Related Functions’,Astrophys. J. Suppl. Ser. 7, No. 72, 411–560.

    Article  ADS  Google Scholar 

  • Tait, J. H.: 1965, ‘An Introduction to Neutron Transport Theory’. American Elsevier, New York.

    MATH  Google Scholar 

  • Ueno, S.: 1962, ‘The Probabilistic Method for Problems of Radiative Transfer. XIII: Diffusion Matrix’,J. Math. Anal. Appl. 4, 21–37.

    Article  Google Scholar 

  • Van de Hulst, H. C.: 1964, ‘The Point-Direction Gain in a Plane-Parallel Scattering Atmosphere’,Bull. Astron. Inst. Neth. 17, 495–503.

    ADS  Google Scholar 

  • Van de Hulst, H. C. andTerhoeve, F. G.: 1966, ‘The Escape of Radiation from a Semi-Infinite Non-Conservative Atmosphere’,Bull. Astron. Inst. Neth. 18, 377–386.

    ADS  Google Scholar 

  • Yamamoto, G.: 1955, ‘Radiative Equilibrium of the Earth's Atmosphere, III: The Exact Solution for a Grey, Finite Atmosphere’,Sci. Rept. Tohoku Univ. Fifth Ser. 7, 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heaslet, M.A., Warming, R.F. Radiative source-function predictions for finite and semi-infinite non-conservative atmospheres. Astrophys Space Sci 1, 460–498 (1968). https://doi.org/10.1007/BF00658770

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658770

Keywords

Navigation