Advertisement

Colloid and Polymer Science

, Volume 273, Issue 8, pp 766–771 | Cite as

Study of the influence of physical aging on macroradical decay in poly(methyl methacrylate)

  • J. Bartoš
  • M. Klimová
  • F. Szőcs
Original Contribution

Abstract

The macroradical decay in poly(methyl methacrylate) samples with different thermal histories was investigated in the temperature interval 20–100 °C using ESR spectroscopy and the second order kinetic model. The rate constants exhibit two different regimes with the transitions atTtr=68±1°C which are independent of thermal treatment. ForT<Ttr andT>Ttr the rate constants as well as the corresponding activation parameters are sensitive to history because of different physical microstructures. The compensation law, i.e., the linear relation between lnko, eff andEeff, was analyzed in terms of the so-called compensation quantitieskc andTc and a proximity betweenTc=Ttr andTo=53±3 °C — Vogel temperature for α-segmental dynamics was found. A comparison of kinetic and dynamic data suggests that the decay of terminal macroradicals in the low-temperature region is controlled by secondary relaxations and that the α-mobility contributes to a more rapid decay at higher temperatures belowTg.

Key words

Physical aging macroradical decay compensation law relaxation dynamics poly(methyl methacrylate) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKenna GB in Both C, Price C (eds) (1989) Comprehensive Polymer Science, Vol 2 Polymer Properties, Pergamon, Oxford p 311Google Scholar
  2. 2.
    Tant HR, Wilkes GL (1981) Polym Eng Sci 21:874Google Scholar
  3. 3.
    Kovacs AJ (1963) Adv Polym Sci 3:394Google Scholar
  4. 4.
    Petrie SEB (1972), J Polym Sci A2:1255Google Scholar
  5. 5.
    Kobayashi Y, Zheng W, Meyer EF, McGervey JD, Jamieson AM, Simha R (1989) Macromolecules 22:2303Google Scholar
  6. 6.
    Struik LCE (1977) Polym Engn Sci 17:165Google Scholar
  7. 7.
    Greiner R, Schwarzl FR (1984) Rheol Acta 23:378Google Scholar
  8. 8.
    Goodwin AA, Hay JN (1990) Polym Commun 31:338Google Scholar
  9. 9.
    Struik LCE (1978) Physical Aging in Amorphous Polymers and Other Materials. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Alegría A, Goitiandia L, Telleri a I, Colmenero J (1991) J Non Cryst Solids 131–133:457Google Scholar
  11. 11.
    Chan AH, Paul DR (1978) Org Coat Plast Chem 39:230Google Scholar
  12. 12.
    Diaz-Calleja R, Perez J, Gomez-Ribelles JL, Ribes-Greus A (1989) Makromol Chem Macromol Symp 27:289Google Scholar
  13. 13.
    Perez J, Cavaille JY, Calleja RD, Gomez-Ribelles JL, Pradas MM, Greus AR (1991) Makromol Chem 192:2141Google Scholar
  14. 14.
    Lamarre L, Sung CSP (1983) Macromolecules 16:1729Google Scholar
  15. 15.
    Victor JG, Torkelson JM (1988) Macromolecules 21:3490 (1922) ibid 25:729 and 4792 (1993) ibid 26:5331Google Scholar
  16. 16.
    Meyer EF, Jamieson AM, Simha R, Palmen JHM, Booij HC, Maurer FHJ (1990) Polymer 31:243Google Scholar
  17. 17.
    Tsay FD, Hong SD, Moacanin J, Gupta A (1988) J Pol Sci Polym Phys 20:763Google Scholar
  18. 18.
    Bartoš J, Müller J, Wendorff JH (1990) Polymer 31:1678Google Scholar
  19. 19.
    Bartoš J, Szöcs F, Klimová M, Müller J (1992) Polymer 33:3536Google Scholar
  20. 20.
    Rusch KC (1968) J Macromol Sci B2:179Google Scholar
  21. 21.
    Tribone JJ, O Reilly JM, Greener J (1979) Macromolecules 19:1732Google Scholar
  22. 22.
    Gomez-Ribelles JL, Greus AR, Calleja RD (1990) Polymer 31:223Google Scholar
  23. 23.
    Scott Royal J, Torkelson JM (1993) Macromolecules 26:5331Google Scholar
  24. 24.
    Ranby B, Rabek JF (1977) ESR Spectroscopy in Polymer Research, Springer, BerlinGoogle Scholar
  25. 25.
    Mathot VBF (1984) Polymer 25:579Google Scholar
  26. 26.
    Perez J (1988) Polymer 29:483Google Scholar
  27. 27.
    Chang BT, Li JCH (1989) J Polym Sci B Polym Chem 27:1125Google Scholar
  28. 28.
    Iwasaki M, Sakai Y (1969) J Polym Sci Polym Chem 7:1537Google Scholar
  29. 29.
    Plonka A, Pietrucha K (1983) Radiat Phys Chem 21:439Google Scholar
  30. 30.
    Roberts GE, White EFT in Haward RN (ed) (1973) The Physics of Glassy Polymers, Appl Sci Publ. London p 212Google Scholar
  31. 31.
    Muzeau E, Perez J, Johari GP (1991) Macromolecules 24:4713Google Scholar
  32. 32.
    Starkweather HW (1988) Macromolecules 21:1798Google Scholar
  33. 33.
    Starkweather HW (1990) Macromolecules 23:328Google Scholar
  34. 34.
    Plazek DJ (1978) J Appl Polym Sci 22:2127Google Scholar
  35. 35.
    Ferry JD (1980) Viscoelastic Properties of Polymers, Wiley New YorkGoogle Scholar
  36. 36.
    Bartoš J, Klimová M (1994) (submitted)Google Scholar
  37. 37.
    Schlosser E, Schonhals A (1991) Polymer 32:2135Google Scholar
  38. 38.
    Alegria A, Goitiandia L, Tellen a I Colmenero J (1991) J Non-Crystal Solids 131–133:457Google Scholar
  39. 39.
    Lacabanne C, Chatain D, Monpagens JC (1978) Solid State Commun 27:1055Google Scholar
  40. 40.
    Johari GP (1986) In: Dorfmüller Th, Williams G (eds) Molecular Dynamics and Relaxation Phenomena in Glasses, Springer-Verlag, Heidelberg, p 90Google Scholar

Copyright information

© Steinkopff Verlag 1995

Authors and Affiliations

  • J. Bartoš
    • 1
  • M. Klimová
    • 1
  • F. Szőcs
    • 1
  1. 1.Polymer Institute of SASBratislavaSlovakia

Personalised recommendations