Colloid and Polymer Science

, Volume 273, Issue 6, pp 539–543 | Cite as

Enthalpy-entropy compensation in ionic micelle formation

  • D. J. Lee
Original Contribution


The enthalpy-entropy compensation in ionic surfactant micellization process over a large temperature range is examined. The surfactants SDS and C16TAB are investigated experimentally, and the enthalpy and entropy changes are evaluated based on phase separation or mass action models together with the other three surfactant systems. The relationship between compensation temperature and the reference temperatures is discussed.

Key words

Enthalpy-entropy compensation ionic surfactant critical micelle concentration reference temperature temperature effect 



heat capacity change, J/mol-K


critical micelle concentration,M


critical micelle concentration atT=T0,M


Gibbs free energy change, kJ/mol


enthalpy chang, kJ/mol


enthalpy change for transfer of a methylene group to water, kJ/mol


gas constant, 8.314 J/mol-K


entropy change, J/mol-K


entropy change for transfer of a methylene group to water, J/mol-K


entropy change atT=T*, J/mol-K




compensation temperature, K


temperature at which ΔH=0, K


temperature at the minimum point, K



Greek Letters


degree of dissociation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanford C (1980) The Hydrophobic Effect. 2nd Edn., John-Willy, NYGoogle Scholar
  2. 2.
    Hunter RJ (1989) Foundations of Colloid Science, Vol I, Oxford press, NYGoogle Scholar
  3. 3.
    LaMesa C (1990) J Phys Chem 94:323–326Google Scholar
  4. 4.
    Frank HS, Evans MW (1954) J Chem Phys 13:507–532Google Scholar
  5. 5.
    Shinoda K, Kobayashi, M, Yamaguchi N (1987) J Phys Chem 91:5292–5294Google Scholar
  6. 6.
    Baldwins RL (1986) Proc Natl Acad Sci USA 83:8069–8072Google Scholar
  7. 7.
    Muller N (1988) J Soln Chem 17:661–672Google Scholar
  8. 8.
    Muller N (1990) Acc Chem Re 23:23–28Google Scholar
  9. 9.
    Murphy KP, Gill SJ (1989) Pure Appl Chem 61:1097–1104Google Scholar
  10. 10.
    Murphy KP, Privalov PL, Gill SJ (1990) Science 247:559–561Google Scholar
  11. 11.
    Gilli P, Ferretti V, Gilli G, Borea PA (1993) J Phys Chem 98:1515–1518Google Scholar
  12. 12.
    Madan B, Lee B (1994) Biophys Chem 51:279–289Google Scholar
  13. 13.
    Makhatadze GI, Privalov PL (1994) Biophys Chem 51:291–309Google Scholar
  14. 14.
    Murphy KP (1994) Biophys Chem 51:311–326Google Scholar
  15. 15.
    Jolicoeur, Philip PR (1974) Can J Chem 52:1834–1839Google Scholar
  16. 16.
    Goto A, Takemoto M, Endo F (1985) Bull Chem Soc Jpn 58:247–251Google Scholar
  17. 17.
    Bedo Zs, Berecz E, Lakatos I (1992) Colloid Polym Sci 270:799–805Google Scholar
  18. 18.
    Krishnan CV, Friedman HL (1973) J Soln Chem 2:37Google Scholar
  19. 19.
    Krishnan CV, Friedman HL (1973) J Soln Chem 2:119Google Scholar
  20. 20.
    Evans DF, Wightman PJ (1982) J Colloid Interf Sci 86:515–524Google Scholar
  21. 21.
    Nusselder JJH, Engberts JBFN (1992) J Colloid Interf Sci 148:353–361Google Scholar
  22. 22.
    Hamann SD (1978) Aus J Chem 31:919–921Google Scholar
  23. 23.
    Holtzer A, Holtzer MF (1974) J Phys Chem 78:1442–1443Google Scholar
  24. 24.
    Lee DJ (1993) Bull Coll Eng, NTU, 58:1–10Google Scholar
  25. 25.
    Causi S, De Lisi R, Milioto S, Tirone N (1991) J Phys Chem 95:5664–5673Google Scholar
  26. 26.
    Wennerstrom H, Lindman B (1979) Phys Rep 52:1–86Google Scholar
  27. 27.
    Gill SJ, Nichols NF, Wadso I (1976) J Chem Thermodyn 8:445Google Scholar
  28. 28.
    Naghibi H, Dec SF, Gill SJ (1986) J Phys Chem 90:4621; Naghibi H, Gill SJ (1987) J Phys Chem 91:245; Naghibi H, Ownby DW, Gill SJ (1987) J Chem Eng Data 32:422Google Scholar

Copyright information

© Steinkopff Verlag 1995

Authors and Affiliations

  • D. J. Lee
    • 1
  1. 1.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan ROC

Personalised recommendations