Colloid and Polymer Science

, Volume 274, Issue 11, pp 1033–1043 | Cite as

Coupling of concentration fluctuations to viscoelasticity in highly concentrated polymer solutions

  • T. Jian
  • D. Vlassopoulos
  • G. Fytas
  • T. Pakula
  • W. Brown
Original Contribution

Abstract

Photon correlation spectroscopy in the polarized geometry has been used to systematically investigate the complex dynamics of a highly concentrated entangled polymer solution in a nominally good solvent, poly(butylacrylate) in dioxane. In addition to the well known fast cooperative diffusion process, a slow virtuallyq-independent mode is detected, whereq is the scattering wavevector, in agreement with previous experimental works on semidilute solutions. This mode is attributed to the viscoelastic nature of the transient physical network, formed by the entanglements, which relaxes its elastic stress induced by the concentration fluctuations, as confirmed by small amplitude oscillatory shear measurements; the latter reveal a terminal relaxation time comparable to the characteristic time of the slow relaxation process. Results, especially in terms of concentration and temperature dependence, are evaluated and discussed in view of the existing theoretical treatments in the field, predicting the existence of the slow viscoelastic relaxation. The relationship between dynamic light scattering and mechanical spectroscopy is established.

Key words

Polymers concentrated solutions entanglements dynamics photon correlation spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berne B, Pecora R (1976) Dynamic Light Scattering. Wiley, New YorkGoogle Scholar
  2. 2.
    Schaefer DW, Han CC (1985) In: Pecora R (ed) Dynamic Light Scattering. Plenum Press, New YorkGoogle Scholar
  3. 3.
    de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell Univ Press, Ithaca, New YorkGoogle Scholar
  4. 4.
    Brown W, Nicolai T (1993) In: Brown W (ed) Dynamic Light Scattering. The Method and some applications (Brown W. ed), Oxford, LondonGoogle Scholar
  5. 5.
    Nicolai T, Brown W, Hvidt S, Heller K (1990) Macromolecules 23:5088.; Nicolai T, Brown W, Johnsen R, Stepanek P (1990) Macromolecules 23:1165Google Scholar
  6. 6.
    Amis EJ, Han CC (1982) Polymer Commun 23:1403; Amis EJ, Han CC, Matsushita Y (1984) Polymer 25:650Google Scholar
  7. 7.
    Koch T, Strobl G, Stühn B (1992) Macromolecules 25:6255Google Scholar
  8. 8.
    Wang CH, Zhang XQ (1993) Macromolecules 26:707Google Scholar
  9. 9.
    Brown W (1984) Macromolecules 17:66Google Scholar
  10. 10.
    Chang T, Yu H (1984) Macromolecules 17:115Google Scholar
  11. 11.
    Brown W, Nicolai T (1990) Colloid Polym Sci 268:977Google Scholar
  12. 12.
    Fischer EW (1993) Physica A 201:183Google Scholar
  13. 13.
    Floudas G, Fytas G, Ngai KL (1990) Macromolecules 23:1104; Floudas G, Fytas G, Fischer EW (1991) Macromolecules 24:1955; Gapinski J, Fytas G, Floudas G (1992) J Chem Phys 96:6311Google Scholar
  14. 14.
    Adam M, Delsanti M (1983) J Phys (France) 44:185; Adam M, Delsanti M (1984) J Phys (France), 45:1513; Adam M, Delsanti M (1977) Macromolecules 10:1229Google Scholar
  15. 15.
    Koike A, Nemoto N, Inoue T, Osaki K (1995) Macromolecules 28:2339; Nemoto N, Koike A, Osaki K (1996) Macromolecules 29:1445Google Scholar
  16. 16.
    Nemoto N, Kuwahara M, Yao M, Osaki K (1993) Langmuir 11:36; Buhler E, Munch JP, Candau SJ (1995) J Phys II France 5:765Google Scholar
  17. 17.
    de Gennes PG (1976) Macromolecules 9:587; de Gennes PG (1976) Macromolecules 9:594; Brochard F, de Gennes PG (1977) Macromolecules 10:1157; Brochard F (1983) J Phys (France) 44:39Google Scholar
  18. 18.
    Adam M, Delsanti M (1985) Macromolecules 18:1760Google Scholar
  19. 19.
    Doi M, Onuki A (1992) J Phys II France 2:1631Google Scholar
  20. 20.
    Larson RG (1988) Constitutive Equations for Polymer Melts and Solutions. Butterworths, BostonGoogle Scholar
  21. 21.
    Nemoto N, Kishine M, Inoue T, Osaki K (1991) Macromolecules 24:1648Google Scholar
  22. 22.
    Semenov AN (1990) Physica A 166:263Google Scholar
  23. 23.
    Pincus P (1981) J Chem Phys 75:1996; Binder K (1983) J Chem Phys 79:6387Google Scholar
  24. 24.
    Wang CH (1991) J Chem Phys 95:3788; Wang CH (1992) Macromolecules 25:1524; Wang CH (1993) In: Brown W (ed) Dynamic Light Scattering. The Method and some applications. Oxford, London.Google Scholar
  25. 25.
    Akcazu AZ, Wang CH, Klein R (1994) Macromolecules 27:2736Google Scholar
  26. 26.
    Wang CH (1995) J Chem Phys 102:6537; Wang CH, Sun Z, Huang QR (1995) J Chem Phys, submittedGoogle Scholar
  27. 27.
    Brown W, Stepanek P (1993) Macromolecules 26:6884Google Scholar
  28. 28.
    Genz U (1994) Macromolecules 27:3501Google Scholar
  29. 29.
    Brown W, Schillen K, Johnsen R, Konak C, Dvoranek L (1992) Macromolecules 25:802Google Scholar
  30. 30.
    Provencher SW (1982) Comput Phys Commun 27:229Google Scholar
  31. 31.
    Ferry JD (1980) Viscoelastic Properties of Polymers. 3rd ed, Wiley, New YorkGoogle Scholar
  32. 32.
    Wang CH, Zhang XQ (1995) Macromolecules 28:2288Google Scholar
  33. 33.
    Huber K, Bantle S, Lutz P, Burchard W (1985) Macromolecules 18:1461Google Scholar
  34. 34.
    Douglas JF, Hubbard JB (1991) Macromolecules 24:3163Google Scholar
  35. 35.
    Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Oxford, London; Schweizer KS, Szamel G (1995) Macromolecules 28:7543Google Scholar
  36. 36.
    Wang CH, Sun Z, Zhang XQ (1994) Makromol Symp 28:2288Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • T. Jian
    • 1
  • D. Vlassopoulos
    • 1
  • G. Fytas
    • 1
  • T. Pakula
    • 2
  • W. Brown
    • 3
  1. 1.Foundation for Research and Technology — HellasInstitute of Electronic Structure and LaserCreteGreece
  2. 2.Max-Planck-Institut für PolymerforschungMainzFRG
  3. 3.Department of Physical ChemistryUniversity of UppsalaUppsalaSweden

Personalised recommendations