Colloid and Polymer Science

, Volume 270, Issue 6, pp 584–589 | Cite as

3-D-electron microscopy configuration of TMOS wet silica gels prepared by the quick-freeze, deep-etching-rotary-replication technique

  • P. Favard
  • J. P. Lechaire
  • M. Maillard
  • N. Favard
  • P. Andreazza
  • F. Lefaucheux
  • M. C. Robert
Original Contributions


Silica gel provides a useful medium for crystal growth; solution growth is confined to pores left free by the polymer during its development. All growth steps depend on the gel structure, which is not completely known for crystal growth conditions. Therefore, a three-dimensional (3-D) visualization has been performed for two TMOS aqueous gels, which are rather fragile: the quick-freeze, deep-etching, rotary-replication method has been applied for sample preparation. An original surface labeling technique has been used for surface recognition. The results concern the distribution of macropores that are responsible for crystal nucleation; micropores whose total volume is larger have not been visualized due to the limits of the method. These results are discussed in comparison with previous data performed by light scattering.

Key words

Silica aqueous gels ultra-rapid freezing network structure pore distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henisch HK, Crystals in gels and Liesegang rings (1988) Cambridge University PressGoogle Scholar
  2. 2.
    Andreazza P, Lefaucheux F, Mutaftschiev B (1988) J Cryst Growth 92:415–422Google Scholar
  3. 3.
    Lefaucheux F, Robert MC, Bernard Y (1988) J Cryst Growth 88:97–106Google Scholar
  4. 4.
    Lefaucheux F, Robert MC, Gits S, Bernard Y, Gauthier Manuel B (1986) Rev Int Haut Temp Refrac 23:57–67Google Scholar
  5. 5.
    Quinson JF, Dumas J, Serrughetti J (1986) J Non Crystalline Solids 79:397–404Google Scholar
  6. 6.
    Dubois M, Cabane B (1989) Macromolecules 22:2526–2533Google Scholar
  7. 7.
    Terech P, Volino F, Ramasseul R (1985) J Physique 46:895–903Google Scholar
  8. 8.
    Himmel B, Gerber Th, Burger H (1990) J Non Crystalline Solids 119:1–13Google Scholar
  9. 9.
    Rüchel R, Steere R, Erbe E (1978) J Chromatography 166:563–575Google Scholar
  10. 10.
    Nixon P, White J, Hem S (1987) J Colloid and Interface Science 120, 2:312–319Google Scholar
  11. 11.
    Muller T, Hakert H, Eckert Th (1989) Colloid and Polym Sci 267:230–236Google Scholar
  12. 12.
    Heuser J (1979) J Cell Biol 81:275–300Google Scholar
  13. 13.
    Heuser J (1981) in: Turner JN (ed.) Methods in Cell Biology. Academic Press, New York-22, pp 97–122Google Scholar
  14. 14.
    Wade RH, Terech P, Hewatt EA, Ramasseul R, Volino F (1986) J Colloid Interface Sci 114:442–451Google Scholar
  15. 15.
    Favard P, Lechaire JP, Maillard M, Favard N, Djabourov M, Leblond J (1989) Biol Cell 67:201–207Google Scholar
  16. 16.
    Cabane B, Dubois M, Lefaucheux F, Robert MC (1990) J Non Crystalline Solids 119:121–131Google Scholar
  17. 17.
    Miller KR, Prescott CS, Jacobs TL, Lassignal NL (1983) J Ultrastruct Res 82:123–133Google Scholar
  18. 18.
    Escaig J (1982) J Microscopy 126:221–229Google Scholar
  19. 19.
    Gilkey JC, Staehelin LA (1986) J Electron Microsc Tech 3:177–210Google Scholar
  20. 20.
    Marraud A (1965) Soc Fr Photogrammétrie Bull 17:7–15Google Scholar
  21. 21.
    Turner JN (1981) in: Turner JN (ed.) Methods in Cell Biology. Academic Press, New York-22, pp 1–11Google Scholar
  22. 22.
    Cabane B, Dubois M, Duplesis R (1987) J Physique 48:2131–2137Google Scholar
  23. 23.
    Gits-Leon S, Lefaucheux F, Robert MC (1987) J Cryst Growth 84:155–162Google Scholar
  24. 24.
    Quinson JF, Tchipkam N, Dumas J, Bovier C, Serrughetti J (1988) J Non Crystalline Solids 100:231–235Google Scholar

Copyright information

© Steinkopff-Verlag 1992

Authors and Affiliations

  • P. Favard
    • 1
  • J. P. Lechaire
    • 1
  • M. Maillard
    • 1
  • N. Favard
    • 1
  • P. Andreazza
    • 2
  • F. Lefaucheux
    • 2
  • M. C. Robert
    • 2
  1. 1.Centre de Biologie CellulaireCNRSIvry-sur-SeineFrance
  2. 2.Laboratoire de Minéralogie Cristallographieassocié au CNRSParis Cedex 05France

Personalised recommendations