Skip to main content
Log in

Swelling behavior and mechanical properties of endlinked poly (dimethylsiloxane) networks and randomly crosslinked polyisoprene networks

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Measurements of the equilibrium degree of swelling and of the equilibrium modulus were performed on poly(dimethylsiloxane) networks (PDMS) and on polyisoprene vulcanizates. The results support the concept that topological interactions between network chains, e.g. entanglements or the like, have a large influence on the rubber elastic behavior, at least within a certain range of network densities.

PDMS networks having network chains of different lengths and varying functionlities of the crosslinks were prepared in bulk by endlinking fractionated α,ω-divinyl PDMS via multifunctional hydrogen-siloxanes (f=3 to 22). Natural rubber (NR) and synthetic liquid polyisoprene (IR) were cured in bulk with various amounts of dicumyl peroxide to give randomly crosslinked samples.

The experimentally determined moduli and degrees of swelling were compared with theoretical predictions based on the phantom network theory and affine network theory, taking into account only chemical crosslinks. The observed discrepancies can be traced back to a contribution of topological interactions (trapped entanglements) to the total effective network density. The modulus and swelling data are consistent, thus ruling out non-equilibrium effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhn W (1934) Kolloid-Z 68:2 (1936) ibid 76:258 (1939) ibid 87:3

    Google Scholar 

  2. Guth E, Mark H (1934) Monatsh Chem 65:93

    Google Scholar 

  3. Wall FT (1942) J Chem Phys 10:485

    Google Scholar 

  4. Flory PJ, Rehner J (1943) J Chem Phys 11:512

    Google Scholar 

  5. Flory PJ (1950) J Chem Phys 18:108

    Google Scholar 

  6. Wall FT, Flory PJ (1951) J Chem Phys 19:1435

    Google Scholar 

  7. Treloar LRG (1943) Trans Farad Soc 39:36 (1946) ibid 42:77

    Google Scholar 

  8. Hermans JJ (1947) Trans Farad Soc 43:591

    Google Scholar 

  9. James HM, Guth E (1943) J Chem Phys 11:455 (1947) ibid 15:669

    Google Scholar 

  10. Guth E (1966) J Polym Sci C 12:89 (1970) ibid 31:267

    Google Scholar 

  11. Duiser JA, Staverman AJ (1965) In: Prins JA (ed) Physics of Non-Crystalline Solids, North-Holland Publ Comp, Amsterdam, pp 376

    Google Scholar 

  12. Eichinger BE (1972) Macromolecules 5:496

    Google Scholar 

  13. Ziabicki A (1974) Colloid Polym Sci 252:767

    Google Scholar 

  14. Graessley WW (1975) Macromolecules 8:186, 865

    Google Scholar 

  15. Flory PJ (1976) Proc R Soc London A351:351 (1977)

    Google Scholar 

  16. — (1976) J Chem Phys 66:5720

    Google Scholar 

  17. Erman B, Flory PJ (1978) J Chem Phys 68:5363

    Google Scholar 

  18. Flory PJ, Erman B (1982) Macromolecules 15:800, 806

    Google Scholar 

  19. Ronca G, Allegra G (1975) J ChemPhys 63:4990

    Google Scholar 

  20. Kästner S (1976) Faserforschung und Textiltechnik 27:1

    Google Scholar 

  21. Langley NR (1968) Macromolecules 1:348

    Google Scholar 

  22. Dossin LM, Graessley WW (1979) Macromolecules 12:123

    Google Scholar 

  23. Pearson DS, Graessley WW (1980) Macromolecules 13:1001

    Google Scholar 

  24. Ferry JD, Kan H-C (1978) Rubber Chem Techn 51:731

    Google Scholar 

  25. Oppermann W, Rennar N (1987) Progr Colloid Polym Sci 75:49

    Google Scholar 

  26. Rennar N (1988) PhD Thesis, Technical University Clausthal

  27. Rennar N (1989) Kautschuk u. Gummi, Kunstst 42:480

    Google Scholar 

  28. Rehage G (1964) Kolloid-Z u Z Polym 194:16

    Google Scholar 

  29. Flory PJ (1978) Principles of Polymer Chemistry, Cornell University Press, New York

    Google Scholar 

  30. Flory PJ (1942) J Chem Phys 10:51

    Google Scholar 

  31. Huggins ML (1942) Ann NY Acad Sci 43:1 (1943) ibid 44:431

    Google Scholar 

  32. Oppermann W (1979) PhD Thesis, Technical University Clausthal

  33. Daoud M et al (1975) Macromolecules 8:804

    Google Scholar 

  34. Heinrich G, Straube, E, Helmis G (1979) Plaste u. Kautschuk 26:561

    Google Scholar 

  35. Gaylord RJ (1982) Polym Bull 8:325 (1983) ibid 9:181

    Google Scholar 

  36. Graessley WW (1982) Adv Polym Sci 47:67

    Google Scholar 

  37. Ullman R (1986) In: Lal J, Mark JE (eds) Adv Elast Rubber Elasticity, Plenum Press, New York, pp 291

    Google Scholar 

  38. Erman B, Monnerie L (1989) Macromoleculs 22:3342

    Google Scholar 

  39. Termonia Y (1989) Macromolecules 22:3633

    Google Scholar 

  40. Sugamiya K, Kuwahara N, Kaneko M (1974) Macromolecules 7:66

    Google Scholar 

  41. Mark JE, Zhang Z-M (1983) J Polym Sci Phys 21:1971

    Google Scholar 

  42. Llorente MA, Mark JE (1980) Macromolecules 13:681

    Google Scholar 

  43. Langley NR, Polmanteer KE (1974) J Polym Sci Phys 12:1023

    Google Scholar 

  44. Oppermann W, Rehage G (1981) Colloid Polym Sci 259:1177

    Google Scholar 

  45. Eichinger BE, Flory PJ (1968) Trans Farad Soc 64:2035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rennar, N., Oppermann, W. Swelling behavior and mechanical properties of endlinked poly (dimethylsiloxane) networks and randomly crosslinked polyisoprene networks. Colloid Polym Sci 270, 527–536 (1992). https://doi.org/10.1007/BF00658283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658283

Key words

Navigation