Advertisement

Astrophysics and Space Science

, Volume 211, Issue 2, pp 233–240 | Cite as

The seasonal variation of the newtonian constant of gravitation and its relationship with the “classical tests” of general relativity

  • Asger G. Gasanalizade
Article

Abstract

The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a0/c2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a−p. It is concluded that
$$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$

The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.

Keywords

Anisotropy General Relativity Seasonal Variation Classical Test Newtonian Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BIPM: 1983,Comptes Rendus des Séances de la 17e CGPM, BIPM, France.Google Scholar
  2. Biraben, F.et al.: 1989,Phys. Rev. Lett. 62, 6.Google Scholar
  3. Brans, C. and Dicke, R.H.: 1961,Phys. Rev. 124, 925.Google Scholar
  4. Cohen, E.R. and Giacomo, P.: 1987,Physica 146, 1.Google Scholar
  5. Cohen, E.R. and Taylor, B.N.: 1987,Rev. Mod. Phys. 59, 1121.Google Scholar
  6. Dicke, R.H.: 1961, in: I.V. Berkner and H. Odishaw (eds.),Science in Space, McGraw-Hill Book Co., Inc., New York, p. 111.Google Scholar
  7. Dicke, R.H.: 1962,Phys. Rev. 125, 2163.Google Scholar
  8. Dicke, R.H.: 1964, in: H.-E. Chiu and W.F. Hoffmann (eds.),Gravitation and Relativity, W.A. Benjamin, Inc., New York, p. 251.Google Scholar
  9. Facy, L. and Pontikis, C.: 1970,Comptes Rend. 270B, 15.Google Scholar
  10. Facy, L. and Pontikis, C.: 1971,Comptes Rend. 272B, 1397.Google Scholar
  11. Freundlich, E.F.: 1954,Phil. Mag. 45, 303.Google Scholar
  12. Gasasalizade, A.G.: 1971,Solar Phys. 20, 507.Google Scholar
  13. Gasanalizade, A.G.: 1991,Abstracts 2nd Int. Conf. ‘Problem Space and Time in Natural Sciences’, St. Petersburg, p. 17.Google Scholar
  14. Gasanalizade, A.G.: 1992a,Astrophys. Space Sci. 189, 155. Corrigendum: 1993,Astrophys. Space Sci. 201, 163.Google Scholar
  15. Gasanalizade, A.G.: 1992b,Astrophys. Space Sci. 195, 463.Google Scholar
  16. Heyl, P.R. and Chrzanowski, P.: 1942,J. Res. Natl. Bur. Stand. 29, 1.Google Scholar
  17. IAU 1976: 1977,IAU Transactions 16B, D. Reidel Publ. Co., Dordrecht, Holland, p. 49.Google Scholar
  18. Josephson, B.D.: 1962,Phys. Letters 1, 251.Google Scholar
  19. von Klitzing, K.: 1986,Rev. Mod. Phys. 58, 519.Google Scholar
  20. Lang, K.P.: 1974,Astrophysical Formulae, Springer-Verlag, Berlin, p. 578.Google Scholar
  21. Luther, G. and Towler, W.R.: 1982,Phys. Rev. Lett. 48, 121.Google Scholar
  22. Nordtvedt, K., Jr. and Will, C.M.: 1972,Astrophys. J. 177, 775.Google Scholar
  23. Pontikis, C.: 1972,Comptes Rend. 274B, 437.Google Scholar
  24. Rose, R.D.et al.: 1969,Rev. Lett. 23, 655.Google Scholar
  25. Sagitov, M.U.et al.: 1979,Dokl. Acad. Nauk SSSR 245, 567; (Soviet Phys. Dokl. 245, 20 (1981)).Google Scholar
  26. Shapiro, J.J.et al.: 1972,Phys. Rev. Lett. 28, 1594.Google Scholar
  27. Shapiro, I.I.: 1979, in:Astrofisica E Cosmologia Gravitazione Quanti E Relativita, Guinti Barbera, Firenze.Google Scholar
  28. Taylor, B.N. and Cohen, E.R.: 1990,J. Res. Natl. Inst. Stand. Technol. 95, 497.Google Scholar
  29. Vinti, J.P.: 1972,Celest. Mech. 6, 198.Google Scholar
  30. Whitrow, G.J. and Morduch, G.E.: 1965, in: A. Beer (ed.),Vistas in Astronomy 6, Pergamon Press, Oxford.Google Scholar
  31. Will, C.M.: 1971,Astrophys. J. 169, 141.Google Scholar
  32. Will, C.M. and Nordtvedt K., Jr.: 1972,Astrophys. J. 177, 757.Google Scholar
  33. Wittmann, A.D.: 1974,Solar Phys. 36, 65.Google Scholar
  34. Wittmann, A.D.: 1977,Astron. Astrophys. 61, 225.Google Scholar
  35. Wittmann, A.D., Alge, E. and Bianda, M.: 1991,Solar Phys. 135, 243.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Asger G. Gasanalizade
    • 1
  1. 1.Shemakha Astrophysical ObservatoryAcademy of Sciences of the Azerbaijan RepublicShemhkha, PirkuliAzerbaijan

Personalised recommendations