Skip to main content
Log in

The influence of thermal cycling on the oxidation and oxide spallation of a 1%Cr–0.5%Mo low-carbon steel

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation and oxide spallation of 1%Cr–0.5%Mo low carbon steel disks in dry oxygen was studied isothermally at 800°C (1073 K) and in thermal cycling between 800 and 600°C (1073 and 873K) followed by cooling at rates from 3 to 100°C/min. Mostly parabolic oxidation kinetics were observed. Thin scales (10 μ) were more prone to spalling than thicker scales (20 μ). The thickness and growth imperfections of an inner scale layer enriched in chromium, molybdenum, and silicon strongly influenced the probability of cohesive failure exceeding that of adhesive failure of the scale. Cohesive failures in the bulk scale during thermal cycling were probably nucleated at voids and microcracks produced in the initial isothermal period of scale growth. The number of segmented scale layers that became detached during cycling was governed by the number of parallel rows of voids in the scale and not necessarily by the number of cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ilschner,Corrosion and Mechanical Stress at High Temperatures, V. Guttman and M. Merz, eds. (Applied Science Publishers, London, 1981), p. 463.

    Google Scholar 

  2. J. K. Tien and J. M. Davidson,Stress Effects and the Oxidation of Metals, J. V. Cathcart, ed. (Metallurgical Society of the AIME, New York, 1975), p. 200.

    Google Scholar 

  3. D. L. Douglass,Oxidation of Metals and Alloys (American Society for Metals, Cleveland, 1970), p. 137.

    Google Scholar 

  4. P. Hancock,Stress Effects and the Oxidation of Metals, J. V. Cathcart, ed. (Metallurgical Society of the AIME, New York, 1975), p. 155.

    Google Scholar 

  5. R. Rolls,Rev. High Temp. Mat. 1, 397 (1973).

    Google Scholar 

  6. P. Hancock and R. C. Hurst,Adv. Corros. Sci. Technol. 4, 1 (1974).

    Google Scholar 

  7. R. F. Tylecote,J. Inst. Metals 78, 301 (1950).

    Google Scholar 

  8. A. K. Ghosh and R. Rolls,Iron Steel 42, 151 (1969).

    Google Scholar 

  9. G. J. Bateman and R. Rolls,Br. Corros. J. 5, 122 (1970).

    Google Scholar 

  10. J. M. Hulley and R. Rolls,J. Iron Steel Inst. (London)208, 1029 (1970).

    Google Scholar 

  11. R. Rolls and F. V. Arnold,Werkst Korros. 23, 886 (1972).

    Google Scholar 

  12. R. Rolls and F. V. Arnold,Corros. Sci. 16, 613 (1976).

    Google Scholar 

  13. J. J. Bickerman,J. Adhes. 3, 333 (1972).

    Google Scholar 

  14. R. J. Good,J. Adhes. 4, 133 (1972).

    Google Scholar 

  15. M. L. Williams,J. Adhes. 4, 307 (1972).

    Google Scholar 

  16. J. Stringer,Corros. Sci. 10, 513 (1970).

    Google Scholar 

  17. J. Stringer,Werkst. Korros. 23, 9 and 747 (1972).

    Google Scholar 

  18. D. Holmes and R. T. Pascoe,Werkst. Korros. 23, 10, 859 (1972).

    Google Scholar 

  19. D. L. Deadmore and C. E. Lowell,Oxid. Met. 11, 91 (1977).

    Google Scholar 

  20. J. L. Smialek,Met. Trans. (A) 9A, 309 (1978).

    Google Scholar 

  21. H. T. Michels,Met. Trans. (A) 9A, 873 (1978).

    Google Scholar 

  22. C. E. Lowell and D. L. Deadmore,Oxid. Met. 14, 325 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolls, R., Nematollahi, M. The influence of thermal cycling on the oxidation and oxide spallation of a 1%Cr–0.5%Mo low-carbon steel. Oxid Met 20, 19–35 (1983). https://doi.org/10.1007/BF00658125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658125

Key words

Navigation