Astrophysics and Space Science

, Volume 225, Issue 1, pp 123–135 | Cite as

Celestial bodies and multidimensional Einstein theory of gravitation

  • U. Bleyer
  • L. SH. Grigorian
Article

Abstract

Static spherically symmetric celestial bodies are investigated in multidimensional Einstein theory of gravitation. A model with compact Ricci-flat internal space ℝ n is studied and confronted with observations. Integration constants in the exterior solution of field equations are determined using integrals over the distribution of matter inside the celestial body. Two independent formulas for the mass and mass squared of the celestial body are derived. The first one is similar to Tolman's formula for the mass in GRT. It is shown that integral parameters (mass, radius etc.) of the matter distribution inside the celestial body tend to definite limits in the case of large number (n → ∞) of extra dimensions.

As main result it turns out that the model would be in accordance with solar system observational data only if there would be a negative (with abnormal large absolute value) pressurep1 of solar matter in extra dimensions: |p1| ∼ρc2, where ρ is the matter density.

Keywords

Observational Data Solar System Field Equation Matter Density Extra Dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avakian, R.M.: 1990,Astrofizika 33, 429.Google Scholar
  2. Avakian, R. M., Bleyer, U., Chubarian, E. V. and Grigorin, L. Sh.: 1994, New mass formula for spherically symmetric stellar configurations, AIP preprint (Potsdam) 94-9.Google Scholar
  3. Bleyer, U., Bronnikov, K.A., Mclnikov, V.N. and Fadeev, S.B.: 1994, On black hole stability in multidimensional gravity, AIP preprint (Potsdam) 94-01.Google Scholar
  4. Grigorian, L.Sh. and Sahakian, G.S.: 1983,Astrophys. Space Sci. 95, 305.Google Scholar
  5. Grigorian, L.Sh., Saharian, A.A.: 1990,Astrophys. Space Sci. 167, 271.Google Scholar
  6. Hellings, R.: 1983,Phys. Rev. Lett. 51, 1609.Google Scholar
  7. Ivashchuk, V. D. and Melnikov, V. N.: 1994,Class. and Quant. Grav., (submitted).Google Scholar
  8. Landau, L. D. and Lifshiz, E.M.: 1971,The Classical Theory of Fields, Addison-Wesley.Google Scholar
  9. Melnikov, V.N.: 1993, Centro Brasileiro de Pesquisas Fisicas, to appear in the proceedings of the 1993 summer school.Google Scholar
  10. Misner, C.W., Thorne, K.S. and Wheeler, J.A.: 1973,Gravitation, W.H. Freeman, San Francisco.Google Scholar
  11. Myers, R. C. and Perry, M. J.: 1986,Ann. of Phys. 172, 304.Google Scholar
  12. Myers, R.C.: 1987,Phys. Rev. D 35, 455.Google Scholar
  13. Saakian, G.S.: 1974,Equilibrium Configurations of Degenerate Gaseous Masses, Halsted (Wiley), New York.Google Scholar
  14. Schmutzer, E.: 1988,Ann. Phys. (Leipzig),45, 578.Google Scholar
  15. Schwarzschild, M.: 1958,Structure and Evolution of the Stars, Princeton University Press, Princeton.Google Scholar
  16. Tangherlini, F. R.: 1963,Nuovo Cim. 27, 636.Google Scholar
  17. Will, C. M.: 1981,Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge.Google Scholar
  18. Yoshimura, M.: 1986,Phys. Rev. D 34, 1021.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • U. Bleyer
    • 1
  • L. SH. Grigorian
    • 1
  1. 1.WIP-GravitationsprojektUniversität PotsdamPotsdamGermany

Personalised recommendations