Colloid and Polymer Science

, Volume 273, Issue 3, pp 202–218 | Cite as

A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics

Part II: Future directions
  • G. Schön
  • U. Simon
Leading Contribution


Small metal clusters, like Au55(PPh3)12Cl6, which fall in the size regime of 1–2 nm are colloidal nanoparticles with quantum properties in the transitional range between metals and semiconductors. These chemically tailored quantum dots show by the Quantum Size Effect (QSE) a level splitting between 20 and 100 meV, increasing from small particle sizes to the molecular state. The organic ligand shell surrounding the cluster acts like a dielectric “spacer” generating capacitances between neighboring clusters down to 10−18F. Therefore, charging effects superposed by level spacing effects can be observed. The ligand-stabilized colloidal quantum dots in condensed state can be described as a novel kind of artificial solid with extremely narrow mini or hopping bands depending on the chemically adjustable thickness of the ligand shell and its properties. Since its discovery, the Single Electron Tunneling (SET) effect has been recognized to be the fundamental concept for ultimate miniaturization in microelectronics. The controlled transport of charge carriers in arrangements of ligand-stabilized clusters has been observed already at room temperature through Impedance Spectroscopy (IS) and Scanning Tunneling Spectroscopy (STS). This reveals future directions with new concepts for the realization of simple devices for Single Electron Logic (SEL).

Part II presents models and connections between microscopic and macroscopic level, regardless of whether there already exist suitable nanoscale metal cluster compounds, and is aimed at the ultimate properties for a possible application in microelectronics.

Key words

Ligand-stabilized metal clusters nanoparticles quantum dots single electron logic microelectronic devices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schön G, Simon U (1995) Prog Colloid Poly Sci (in press)Google Scholar
  2. 2.
    Penzar Z, Ekardt W (1990) Z Phys D 17:69–72Google Scholar
  3. 3.
    Genzken O, Brack M, Chabant E, Meyer J (1992) Ber Bunsenges Phys Chem no 9 96:1217–1220Google Scholar
  4. 4.
    Balian R, Bloch C (1971) Ann Phys (N.Y.) 69:76Google Scholar
  5. 5.
    Ozin GA, Bowes CL, Steele M (1992) Mater Res Soc Symp Ser Macromolecular Host-Guest Inclusion Complexes (in press); Ozin GA (1992) Nanomaterials: Endo- and Exosemiconductors, Adv Chem Ser, A.C.S., Washington D.C.Google Scholar
  6. 6.
    Reed M (1993) Spekt d Wiss 3:52–57Google Scholar
  7. 7.
    Cohen ML (1986) Proc 1st NEC Symp, Hakone and Kawasaki, Japan, p. 2–10Google Scholar
  8. 8.
    Schmid G, Schön G, Simon U (1992) German Patent pending No 42-12220Google Scholar
  9. 9.
    Schmid G, Schön G, Simon U (1992) USA Patent pending No 08/041,239Google Scholar
  10. 10.
    Simon U (1992) PhD Thesis University of Essen, GermanyGoogle Scholar
  11. 11.
    Mielke F, Houbertz R, Hartmann U, Simon U, Schön G, Schmid G (1994) Europhys Lett (in press)Google Scholar
  12. 12.
    Schmid G (1992) Chem Rev 92:1709–1727; Schmid G (ed) (1994), VCH, Weinheim (Germany)Google Scholar
  13. 13.
    Schmid G, Lehnert A, Malm J-O, Bovin J-O (1991) Angew Chem Int Ed Engl 30:852Google Scholar
  14. 14.
    Simon U, Schön G, Schmid G (1993) Angew Chem Int Ed Engl No 2 32:250–254Google Scholar
  15. 15.
    Mielke F, Houbertz R, Hartmann U, Simon U, Schön G, Schmid G (1995) (to be published)Google Scholar
  16. 16.
    Vogel W, Rosner B, Tesche B (1993) J Phys Chem 97:11611–11616Google Scholar
  17. 17.
    Smit HHA, Thiel RC, de Jongh LJ, Schmid G, Klein N (1988) Sol St Com 65:915Google Scholar
  18. 18.
    Fairbanks MC, Benfield RE, Newport RJ, Schmid G (1990) Sol St Comm 74:431Google Scholar
  19. 19.
    Marcus MA, Andrews MP, Zegenhagen J, Bommannavar AS, Montano P (1990) Phys Rev B 42:3312Google Scholar
  20. 20.
    Fenske D (private communication), Diploma Thesis University of Karlsruhe, FRGGoogle Scholar
  21. 21.
    Macdonald JR (1987) Impedance Spectroscopy, John Wiley & Sons, New YorkGoogle Scholar
  22. 22.
    van Dijk T, Burggraaf A (1981) Phys Stat Sol a 63:229–240Google Scholar
  23. 23.
    Schouler JL (1979) PhD Thesis Institut National Polytechnique de Grenoble, FranceGoogle Scholar
  24. 24.
    Bauerle JE (1969) J Phys Chem Solids 30:2657–2670Google Scholar
  25. 25.
    Simon U, Schmid G, Schön G (1992) Mat Res Symp Proc Vol 272:167–175Google Scholar
  26. 26.
    Möhrke C (1993) PhD Thesis University of Essen, GermanyGoogle Scholar
  27. 27.
    Schmid G (to be published)Google Scholar
  28. 28.
    Smokers RTM (1992) PhD Thesis University of Nijmegen, The NetherlandsGoogle Scholar
  29. 29.
    Zorin AB (1993) (to be published)Google Scholar
  30. 30.
    Schön G (1994) Spektr d Wiss 4:22–24Google Scholar
  31. 31.
    Kolbert AC, de Groot HJM, van der Putten D, Brom HB, de Jongh LJ, Schmid G, Krautscheid H, Fenske D (1992) submitted to Z Phys DGoogle Scholar
  32. 32.
    Kreibig U, Fauth K, Granqvist C-G, Schmid G (1990) Z Phys Chem 169:11–28Google Scholar
  33. 33.
    Peschel S (1993) Diploma Thesis University of Essen, FRGGoogle Scholar
  34. 34.
    Funke K (1991) Ber Bunsenges Phys Chem 9:955–964Google Scholar
  35. 35.
    van Staveren MPJ, Brom HB, de Jongh LJ (1991) Physics Reports 208:1–96Google Scholar
  36. 36.
    Licharev KK, Zorin AB (1985) J Low Temp Phys 59:347Google Scholar
  37. 37.
    Gladun A, Zorin AB (1992) Phys i u Z No 4 23:159–165Google Scholar
  38. 38.
    Ozin GA (1992) Adv Mater No 10 4:612–649Google Scholar
  39. 39.
    Deutscher G, Levy YE, Ryazantzev IA, Dravin VA, Yakimov AI (1986) Europhys Lett 4:577Google Scholar
  40. 40.
    Hartman TE (1986) J Appl Phys No 4 34:943–947Google Scholar
  41. 41.
    Schönenberger C, van Houten H, Donkersloot HC (1992) Europhys Lett 20 (3):249–254Google Scholar
  42. 42.
    Nejoh H, Aono M (1993) Jpn J Appl Phys No 1B 32:532–535Google Scholar
  43. 43.
    Averin DV, Register LF, Licharev KK Hess K (1993) submitted to J Appl PhysGoogle Scholar
  44. 44.
    Schmid G (1993) (to be published)Google Scholar
  45. 45.
    Chi LF, Johnston RR, Ringsdorf H (1992) Thin Film Solids 210/211:211; (1992) Langmuir 8:1360; Chi LF, Anders M, Fuchs H, Johnston RR, Ringsdorf H (1993) Science 259:213Google Scholar
  46. 46.
    Becker C, Fries Th, Wandelt K, Kreibig U, Schmid G (1991) J Vac Sci Technol B9 2:810–813Google Scholar
  47. 47.
    von Klitzing K, Schmid G (1994) unpublished workGoogle Scholar
  48. 48.
    Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Appl Phys Lett 40:178; Chen J (1993) Introduction to Scanning Tunneling Microscopy, Oxford University Press, New YorkGoogle Scholar
  49. 49.
    Licharev KK, Claeson T (1992) Spektr d Wiss 8:62–67Google Scholar
  50. 50.
    Koch H, Lübbig H (eds) (1992) Single-Electron Tunneling and Mesoscopic Devices, Springer, Berlin HeidelbergGoogle Scholar
  51. 51.
    Grabert H (ed) (1991) Z Phys B (Special Issue on Single Charge Tunneling) No 3:85Google Scholar
  52. 52.
    Corcoran E (1992) Spekt d Wiss (Sonderheft 11) 1:76Google Scholar
  53. 53.
    Wang Y, Herron N, Mahler W, Suna A (1989) J Opt Soc Am B Vol 6 No 4:808–813Google Scholar
  54. 54.
    Fink J, Sohmen E (1992) Phys Bl No1 48:11–15Google Scholar
  55. 55.
    Hamann C, Burghardt H, Frauenheim T (1988); Ebeling W, Weißmantel Ch (eds), VEB, Berlin, 101–119Google Scholar

Copyright information

© Steinkopff Verlag 1995

Authors and Affiliations

  • G. Schön
    • 1
  • U. Simon
    • 1
  1. 1.Institut für Anorganische ChemieUniversität EssenEssenFRG

Personalised recommendations