Advertisement

Colloid and Polymer Science

, Volume 272, Issue 10, pp 1306–1312 | Cite as

The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds III. The effect of alcohols on the coagulation of sodium montmorillonite

  • T. Permien
  • G. Lagaly
Original Contributions

Abstract

The critical coagulation concentration,cK, of sodium chloride for sodium montmorillonite dispersed in water (solid content 0.025 percent) is 8 mmol/L. It remains virtually constant (7.5–8.5 mmol/L) in water-rich alcohol mixtures (below 50% (v/v) methanol and 40% ethanol and propanol). At higher alcohol contents thecK decreases to 3.6 mmol/L (70 percent methanol), 1.2 mmol/L (70 percent ethanol), and 0.8 mmol/L (60 percent propanol). In the presence of 10−4 M sodium diphosphate thecK in water rises to 195 mmol/L. In contrast to the behavior in the absence of diphosphate, even small amounts of alcohol reduce the critical coagulation concentration. In 70% methanol thecK is 7.5 mmol/L, in 70 percent ethanol 2.5 mmol/L and in 60% propanol 5 mmol/L. The main mechanism is coagulation by contacts between negatively charged edges and faces.

At high alcohol contents montmorillonite-alcohol complexes (interlayer solvates) are formed and the colloidal dispersions become unstable even in the absence of salt. Transition from the state with diffuse ionic layers into the quasi-crystalline structure of the interlayer solvates is also evident from the sediment volume which changes with the alcohol content. Maxima are observed which are indicative of band-type structures as intermediate states between the colloidally dispersed particles with repulsive interaction and the discrete particles of the montmorillonite-alcohol complexes.

Key words

Alcohols card-house clay minerals coagulation edge/face aggregation face/face aggregation montmorillonite salt stability sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Permien T, Lagaly G (1994) Clay Min, in pressGoogle Scholar
  2. 2.
    Callaghan IC, Ottewill RH (1974) Disc Faraday Soc 57:110Google Scholar
  3. 3.
    Rand B, Pekenc E, Goodwin JW, Smith RW (1980) J Chem Soc Faraday I 76:225Google Scholar
  4. 4.
    Heath D, Tadros ThF (1983) J Colloid Interface Sci 93:307Google Scholar
  5. 5.
    Keren R, Shainberg I, Klein E (1988) Soil Sci Soc Am J 52:76Google Scholar
  6. 6.
    Brandenburg U, Lagaly G (1988) Appl Clay Sci 3:263Google Scholar
  7. 7.
    Permien T, Lagaly G (1994) Clay Min., in pressGoogle Scholar
  8. 8.
    van Olphen H (1964) J Colloid Sci 19:313Google Scholar
  9. 9.
    van Olphen H (1977) An Introduction to Clay Colloid Chemistry, J. Wiley & Sons, New YorkGoogle Scholar
  10. 10.
    Frey E, Lagaly G (1979) J Colloidal Interface Sci 70:46Google Scholar
  11. 11.
    Hesterberg D, Page AL (1990) Soil Sci Soc Am J 54:729Google Scholar
  12. 12.
    Hesterberg D, Page AL (1990) Soil Sci Soc Am J 54:735Google Scholar
  13. 13.
    Lagaly G (1993) In: Dobias B (ed.) Coagulation and flocculation. Theory and applications. Marcel Dekker, Inc, New York pp. 427–494Google Scholar
  14. 14.
    Hetzel F, Doner HE (1993) Clays Clay Min. 41:453Google Scholar
  15. 15.
    Novich BE, Ring TA (1984) Clays Clay Min 32:400Google Scholar
  16. 16.
    Hogg R, Healy FW, Fuerstenau DW (1966) Trans Farad Soc 62:1638Google Scholar
  17. 17.
    Usui S (1973) J Colloid Interface Sci 44:107Google Scholar
  18. 18.
    Gregory J (1975) J Colloid Interface Sci 51:44Google Scholar
  19. 19.
    Stul MS, van Leemput L (1982) Clay Min 17:209Google Scholar
  20. 20.
    Tributh H, Lagaly G (1986) GIT Fachz Lab 30:524, 771Google Scholar
  21. 21.
    Samii AM, Lagaly G (1987) Proc Internat Clay Conf Denver 1985. Schultz LG, van Olphen H, Mumpton FA (eds) The Clay Minerals Soc, Bloomington, Indiana, pp 363–369Google Scholar
  22. 22.
    Reering H, Overbeek JTG (1954) Disc Farad Soc 18:74Google Scholar
  23. 23.
    Szanto F, Varkonyi B (1963) Kolloid ZZ Polymere 191:123Google Scholar
  24. 24.
    Lagaly G (1981) Clay Min 16:1Google Scholar
  25. 25.
    Lagaly G (1994) CMS workshop lectures, vol. 6, Mermut AR (ed.) Charge characteristics of 2:1 clay minerals, The Clay Mineral Soc., Boulder, Colorado, pp. 1Google Scholar
  26. 26.
    Anderson SJ, Sposito G (1991) Soil Sci Soc Am J 55:1569Google Scholar
  27. 27.
    Peigneur P, Maes A, Cremers A (1975) Clays Clay Min 23:71Google Scholar
  28. 28.
    Secor RB, Radke CJ (1985) J Colloid Interface Sci 103:237Google Scholar
  29. 29.
    Lagaly G (1989) Applied Clay Sci 4:105Google Scholar
  30. 30.
    Miller SE, Low PhF (1990) Langmuir 6:572Google Scholar
  31. 31.
    Güven N (1992) CMS workshop lectures, vol 4: Güven N and Pollastro RM (eds) Clay-water interface and its rheological implications. The Clay Mineral Soc, Boulder. Colorado, p 81Google Scholar
  32. 32.
    Pierre AC (1992) J Can Ceramic Soc 61:135Google Scholar
  33. 33.
    Tatayama H, Hirosue H, Nishimura S, Tsunematsu K, Jinnai K, Imagawa K (1988) In: Mackenzie JD and Ulrich DR (eds) Ultra-structure processing of advanced ceramics. J Wiley & Sons, New York pp 453–461Google Scholar
  34. 34.
    Fukushima Y (1984) Clays Clay Min 32:320Google Scholar
  35. 35.
    Ramsay JDF, Lindner P (1993) J Chem Soc Farad Trans 89:4207Google Scholar
  36. 36.
    Zou J, Pierre AC (1992) J Materials Sci Letters 11:664Google Scholar
  37. 37.
    Pierre AC, Zou J, Barker C (1993) J Mater Sci 28:5193Google Scholar
  38. 38.
    Chan CYS, Pashley RM, Quirk JP (1984) Clays Clay Min 32:131Google Scholar
  39. 39.
    Gan H, Low PF (1993) J Colloid Interface Sci 161:1Google Scholar
  40. 40.
    Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier Publ Comp Amsterdam, New York, p. 118Google Scholar
  41. 41.
    De Rooy N, de Bryn PL, Overbeek JTG (1980) J Colloid Interface Sci 75:542Google Scholar
  42. 42.
    Annabi-Bergaya F, Cruz IM, Gatineau L, Fripiat JJ (1981) Clay Min 16:115Google Scholar
  43. 43.
    Bratko D, Jönsson B, Wennerström H (1986) Chemical Physics Letters 128:449Google Scholar
  44. 44.
    Kjellander R, Marcelja S, Quirk JP (1988) J Colloid Interface Sci 126:194Google Scholar
  45. 45.
    Kahn A (1958) J Colloid Sci 13:51Google Scholar
  46. 46.
    Swartzen-Allen SL, Matijevic E (1976) J Colloid Interface Sci 56:159Google Scholar
  47. 47.
    Goldberg S, Forster HS (1990) Soil Sci Soc Am J 54:714Google Scholar
  48. 48.
    Helmy AK, Ferreiro EA (1974) Electroanalytical Chemistry and Interfacial Electrochemistry 57:103Google Scholar
  49. 49.
    Jenny H, Reitmeier RF (1935) J Phys Chem 39:593Google Scholar
  50. 50.
    Neumann BS, Sansom KG (1971) Clay Min 9:231Google Scholar
  51. 51.
    Perkins R, Brace R, Matijevic E (1974) J Colloid Interface Sci 48:417Google Scholar

Copyright information

© Steinkopff-Verlag 1994

Authors and Affiliations

  • T. Permien
    • 1
  • G. Lagaly
    • 1
  1. 1.Institute of Inorganic ChemistryKiel UniversityKielGermany

Personalised recommendations