Advertisement

Journal of comparative physiology

, Volume 136, Issue 3, pp 243–246 | Cite as

Extraretinal mediation of responses to temperature and light in hatchling alligators

  • Martin Kavaliers
Article

Summary

Hatchling American alligators (Alligator mississippiensis) possess functional retinal and extraretinal (non-pineal) photoreceptors. The threshold energy required to obtain a positive phototactic reponse is directly dependent on temperature (5–37 °C) in alligators perceiving light (i) retinally and extraretinally and, (ii) in animals perceiving light extraretinally only. In animals receiving only retinal light inputs, the temperature dependence of phototactic orientation is eliminated. This provides the first demonstration that extraretinal photoreception is involved in the mediation of temperature dependent light responses.

Keywords

Threshold Energy Light Response Light Input American Alligator Alligator Mississippiensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, K.: Extraocular photoreception in amphibians. Photochem. Photobiol.23, 275–298 (1976)Google Scholar
  2. Burns, A.H., Goodman, D.C.: Retinofugal projections ofCaiman sclerops. Exp. Neurol.18, 105–115 (1967)Google Scholar
  3. Ferguson, J.L., Mulvanny, P.J., Brauth, S.E.: Distribution of neurons projecting to the retina ofCaiman crocodilus. Brain Behav. Evol.15, 294–306 (1978)Google Scholar
  4. Gorski, T.: Red and far-red radiation at sunset. Naturwissenschaften63, 530–531 (1976)Google Scholar
  5. Hartwig, H.G., Veen, T. van: Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. J. Comp. Physiol.130, 277–282 (1979)Google Scholar
  6. Herbutè, S., Baylé, J.D.: Pineal multiunit activity in conscious quail: effects of light, blinding, ganglionectomy. Am. J. Physiol.231, 136–140 (1976)Google Scholar
  7. Huber, G.C., Crosby, E.: On thalamic and tectal nuclei and fiber paths in the brain of the American alligator. J. Comp. Neurol.40, 97–227 (1926)Google Scholar
  8. Lang, J.W.: Amphibious behavior ofAlligator mississippiensis: roles of a circadian rhythm and light. Science191, 575–577 (1976)Google Scholar
  9. Lisk, B.D., Kannwischer, L.R.: Light: Evidence for its direct effect on hypothalamic neurons. Science146, 272–274 (1964)Google Scholar
  10. McIlhenny, E.A.: The alligator's life history. Boston: Christopher 1935Google Scholar
  11. Menaker, M., Underwood, H.: Extraretinal photoreception in birds. Photochem. Photobiol.23, 299–306 (1976)Google Scholar
  12. Nickel, E.: Untersuchungen über den Farbensinn junger Alligatoren. Z. Vergl. Physiol.43, 37–47 (1960)Google Scholar
  13. Oksche, A., Hartwig, H.G.: Photoneuroendocrine systems and the third ventricle. In: Brain-endocrine-interaction II. The ventricular system. Knigge, K.M. et al. (eds.), pp. 40–53. Basel: Karger 1975Google Scholar
  14. Ralph, C.L.: Correlation of melatonin content in pineal gland, blood and brain of some birds and mammals. Am. Zool.16, 35–43 (1976)Google Scholar
  15. Ralph, C.L., Firth, B.T., Gern, W.A., Owens, D.W.: The pineal complex and thermoregulation. Biol. Rev.54, 41–72 (1979)Google Scholar
  16. Reese, A.M.: The development of the American alligator. Smithsonian Misc. Coll.51, 1–66 (1908)Google Scholar
  17. Reese, A.M.: Phototactic reactions ofAlligator mississippiensis. J. Comp. Physiol. Psychol.5, 69–73 (1925)Google Scholar
  18. Romer, A.S.: Vertebrate paleontology. 3rd ed., pp 136–147. Chicago: University of Chicago Press 1966Google Scholar
  19. Rozenberg, C.V.: Twilight. New York: Plenum Press 1966Google Scholar
  20. Scharrer, E.: Photo-neuro-endocrine systems: General concepts. Ann. N.Y. Acad. Sci.117, 13–22 (1964)Google Scholar
  21. Schmidt, I.: Behavioral and autonomic thermoregulation in heat stressed pigeons modified by central thermal stimulation. J. Comp. Physiol.127, 75–87 (1978)Google Scholar
  22. Simon-Oppermann, C., Simon, E., Hammel, H.T.: Hypothalamic thermosensitivity in conscious Pekin Ducks. Am. J. Physiol.235, R130-R140 (1978)Google Scholar
  23. Smith, E.N.: Thermoregulation of the American alligator,Alligator mississippiensis. Physiol. Zool.48, 177–194 (1975)Google Scholar
  24. Smith, E.N.: Heating and cooling rates of the American alligator,Alligator mississippiensis. Physiol. Zool.49, 37–48 (1976)Google Scholar
  25. Spotila, J.R., Soule, O.H., Gates, D.M.: The biophysical ecology of the alligator: Heat energy budgets and climate spaces. Ecology53, 1094–1102 (1972)Google Scholar
  26. Underwood, H.: Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards. J. Comp. Physiol.83, 187–222 (1973)Google Scholar
  27. Underwood, H.: Extraretinal photoreception. In: The behavioral significance of color. Burtt, E.H. (ed.), pp. 127–178. New York: Garland Press 1979Google Scholar
  28. Underwood, H., Menaker, M.: Extraretinal photoreception in lizards. Photochem. Photobiol.23, 227–243 (1976)Google Scholar
  29. Walker, A.D.: New light on the origin of birds and crocodiles. Nature237, 257–263 (1972)Google Scholar
  30. Yokoyama, K., Farner, D.S.: Induction of Zugunruhe by photostimulation of encephalic receptors in white-crowned sparrows. Science201, 76–79 (1978)Google Scholar
  31. Yokoyama, K., Oksche, A., Darden, T.R., Farner, D.S.: The sites of encephalic photoreception in photoperiodic induction of the growth of the testes in the white-crowned sparrow,Zonotrichia leucophrys gumbelia. Cell Tissue Res.189, 441–467 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Martin Kavaliers
    • 1
  1. 1.Department of Zoology and EntomologyColorado State UniversityFort CollinsUSA

Personalised recommendations