Journal of comparative physiology

, Volume 102, Issue 1, pp 43–56 | Cite as

A fovea for e-vector orientation in the eye ofCataglyphis bicolor (Formicidae, Hymenoptera)

  • Peter Duelli


  1. 1.

    The importance of different eye-regions and of different areas within the skylight pattern for the accuracy of polarized light orientation inCataglyphis bicolor has been investigated by restricting the e-vector information in the uv-spectrum to specific parts of the visual field.

  2. 2.

    All parts of the skylight pattern are equally well known to the ants. Looking at areas of maximum or only weak polarization does not influence the orientation performance. The accuracy depends on the position of the visible patch relative to the zero-direction.

  3. 3.

    For e-vector orientation a small quite sharply limited area in the dorsomedial part of the eye appeared to be most important. Its ommatidia are looking at a region of the sky with an elevation ranging from about 43° to 65° to the horizontal plane. The foveal centre lies at approximately 51°.

  4. 4.

    Cinematographically recorded compensatory inclination movements of head and thorax, induced by artificial restrictions of the visible field, lead to angle calculations of 45° for the lower and 60° for the upper margin of the foveal region.

  5. 5.

    The lateral extension of the foveal region could not be defined exactly. The centre, however, is looking at an azimuthal angle of 45° to the head's sagittal plane. The central ommatidia in the foveal region of both eyes include an approximate angle of 90°, thus excluding the interpretation of simultaneous binocular e-vector detection.

  6. 6.

    An aperture with a diameter of 10°, corresponding to a group of 9–17 ommatidia, is sufficient for correct e-vector detection. Polarization analysis is possible with one eye alone.

  7. 7.

    The ommatidia responsible for e-vector orientation have been localized histologically. The behavioural results of the polarization analysis are discussed with regard to neuroanatomical findings in the foveal region.



Visible Field Sagittal Plane Azimuthal Angle Polarization Analysis Lateral Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barros-Pita, J. C., Maldonado, H.: A fovea in the praying mantis eye. II. Some morphological characteristics. Z. vergl. Physiol.67, 79–92 (1970)Google Scholar
  2. Batschelet, E.: Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. Amer. Inst. of Biol. Sciences, Washington (1965)Google Scholar
  3. Bauers, Ch.: Der Fixierbereich des Insektenauges. Z. vergl. Physiol.34, 589–605 (1953)Google Scholar
  4. Duelli, P.: The relation of astromenotactic and anemomenotactic orientation mechanisms in desert ants,Cataglyphis bicolor. In: Information Processing in the visual systems of arthropods (R. Wehner, ed.), p. 281–286. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  5. Duelli, P.: Astrotaktisches Heimfindevermögen tragender und getragener Ameisen (Cataglyphis bicolor). Rev. suisse Zool.80, 712–719 (1973)Google Scholar
  6. Duelli, P.: Polarisationsmusterorientierung bei der WüstenameiseCataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Dissertation, Universität Zürich (1974)Google Scholar
  7. Duelli, P., Wehner, R.: The spectral sensitivity of polarized light orientation inCataglyphis bicolor. J. comp. Physiol.86, 37–53 (1973)Google Scholar
  8. Eheim, W. P., Wehner, R.: Die Sehfelder der zentralen Ommatidien in den Appositionsaugen vonApis mellifera undCataglyphis bicolor (Apidae, Formicidae, Hymenoptera). Kybernetik10, 168–179 (1972)Google Scholar
  9. Frisch, K.v.: Tanzsprache und Orientierung der Bienen. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  10. Gemperlein, R.: Grundlagen zur genauen Beschreibung von Komplexaugen. Z. vergl. Physiol.65, 428–444 (1969)Google Scholar
  11. Görner, P.: Beispiele einer Orientierung ohne richtende Außenreize. Fortschr. Zool.21, 20–43 (1973)Google Scholar
  12. Helversen, O.v., Edrich, W.: Der Polarisationsempfänger im Bienenauge: Ein Ultraviolettrezeptor. J. comp. Physiol.94, 33–47 (1974)Google Scholar
  13. Herrling, P. L.: Measurements on the arrangement of ommatidial structures in the retina ofCataglyphis bicolor. In: Information processing in the visual systems of arthropods, (R. Wehner, ed.), p 49–54. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  14. Herrling, P. L.: Topographische Untersuchungen zur funktionellen Anatomie der Retina vonCataglyphis bicolor. Dissertation, Universität Zürich (1975)Google Scholar
  15. Kirschfeld, K.: Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch.27b, 578–579 (1972)Google Scholar
  16. Kirschfeld, K.: Optomotorische Reaktionen der Biene auf bewegte “Polarisations-Muster”. Z. Naturforsch.28c, 329–338 (1973)Google Scholar
  17. Kunze, P.: Der Einfluß der Größe bewegter Felder auf den optokinetischen Augenstielnystagmus der Winkerkrabbe. Ergebn. Biol.26, 55–62 (1963)Google Scholar
  18. Lüdtke, H.: Die Funktion waagrecht liegender Augenteile des Rückenschwimmers und ihr ganzheitliches Verhalten nach Teillackierangen. Z. vergl. Physiol.22, 67–118 (1935)Google Scholar
  19. Menzel, R., Snyder, W. A.: Polarized light detection in the bee,Apis mellifera. J. comp. Physiol.88, 247–270 (1974)Google Scholar
  20. Menzel, R., Wehner, R.: Augenstrukturen bei verschieden großen Arbeiterinnen vonCataglyphis bicolor. Z. vergl. Physiol.68, 446–449 (1970)Google Scholar
  21. Meyer, H. W.: Visuelle Schlüsselreize für die Auslösung der Beutefanghandlung beim BachwasserläuferVelia caprai. Z. vergl. Physiol.72, 260–297 (1971)Google Scholar
  22. Mittelstaedt, H., Mittelstaedt, M. L.: Mechanismen der Orientierung ohne richtende Außenreize. Fortschr. Zool.21, 46–58 (1973)Google Scholar
  23. Wehner, R.: Visual orientation performance of desert ants,Cataglyphis bicolor, towards astromenotactic directions and horizon landmarks. Proc. AIBS Symp. Animal Orientation and Navigation, (S. R. Galler, eds.), p. 421–436. Washington: US Gov. Print. Off. 1972aGoogle Scholar
  24. Wehner, R.: Pattern modulation and pattern detection in the visual system of Hymenoptera. In: Information Processing in the visual systems of arthropods, (R. Wehner, ed.), p. 183–195. Berlin-Heidelberg-New York: Springer 1972bGoogle Scholar
  25. Wehner, R.: Space constancy of the visual world in insects. Fortschr. Zool.23, 148–160 (1975)Google Scholar
  26. Wehner, R., Eheim, W., Herrling, P. L.: Die Rastereigenschaften des Komplexauges vonCataglyphis bicolor. Rev. suisse Zool.78, 722–737 (1971)Google Scholar
  27. Weiler, R., Huber, M.: The significance of different eye regions for astromenotactic orientation inCataglyphis bicolor. In: Information Processing in the visual systems of arthropods, (R. Wehner, ed.), p. 287–294. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  28. Zolotov, V., Frantsevich, L.: Orientation of bees by the polarized light of a limited area of the sky. J. comp. Physiol.85, 25–36 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Peter Duelli
    • 1
  1. 1.Department of Zoology, Section of NeurobiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations