Skip to main content
Log in

A deuteron NMR study of axial motion and side chain conformation in the mesophase of discotic liquid crystal main-chain polymers

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Pulsed deuteron NMR spectroscopy has been used to examine the axial motion and the side-chain conformation in both oriented and unoriented mesophases of discotic liquid crystal main-chain polymers based on pentyloxy or heptyloxy substituted triphenylenes. Lineshape simulations show that the rotational motion of the triphenylene rings about the column axes can be described by an inhomogeneous distribution of reorientation angles around 45°. However, only about 60% of the discs are involved in such large amplitude motions; the remaining 40% have reorientation angles below 10°. This illustrates the severe restrictions imposed on the rotation of the discs by the interlinkage of the columns via the alkylene spacers. Furthermore, the simulations demonstrate that, at the α-carbon, the side chains show very little fast internal motion, but have a relatively complex conformation involving a disorder which does not change on the microsecond timescale. Since such a disorder is not present in the corresponding monomeric samples it is ascribed to the presence of the spacers. These results are also consistent with the presence of large sterical hindrances between the first side chains segments of adjacent discs, and they indicate a correlated reorientation of the discotic units within a column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandrasekhar S, Sadashiva BK, Suresh KA (1977) Pramana 9:471

    Google Scholar 

  2. Billard J, Dubois JC, Tinh NH, Zann A (1978) Nouv J Chim 2:535

    Google Scholar 

  3. Destrade C, Mondon MC, Malthete J (1979) J Phys (Paris) C-3:17

    Google Scholar 

  4. Kreuder W, Ringsdorf H (1983) Makromol Chem Rapid Commun 4:807

    Google Scholar 

  5. Kreuder W, Ringsdorf H, Tschirner T (1985) Makromol Chem Rapid Commun 6:367

    Google Scholar 

  6. Wenz G (1985) Makromol Chem Rapid Commun 6:577

    Google Scholar 

  7. Kranig W, Hüser B, Spiess HW, Kreuder W, Ringsdorf H, Zimmermann H (1990) Adv Mater 2:36

    Google Scholar 

  8. Hermann-Schönherr O, Wendorff JH, Kreuder W, Ringsdorf H (1986) Makromol Chem Rapid Commun 7:97

    Google Scholar 

  9. Hüser B, Pakula T, Spiess HW (1989) Macromolecules 22:1960

    Google Scholar 

  10. Goldfarb D, Luz Z, Zimmermann H (1981) J Phys (Les Ulis, Fr.) 42:1303

    Google Scholar 

  11. Hüser B, Spiess HW (1988) Makromol Chem Rapid Commun 9:337

    Google Scholar 

  12. Voigt-Martin IG, Durst H, Brzezinski V, Krug H, Kreuder W, Ringsdorf H (1989) Angew Chem Int Ed Engl 28:323

    Google Scholar 

  13. Ringsdorf H, Wüstefeld R, Zerta E, Ebert M, Wendorff JH (1989) Angew Chem Int Ed Engl 28:914

    Google Scholar 

  14. Bengs H, Ebert M, Karthaus O, Krohne B, Praefcke K, Ringsdorf H, Wendorff JH, Wüstefeld R (1990) Adv Mater 2:141

    Google Scholar 

  15. Spiess HW (1982) In: Ward IM (ed) Developments in oriented polymers, Applied Science Publishers, London, Vol 1, p 72

    Google Scholar 

  16. Vallerien SU, Kremer F, Hüser B, Spiess HW (1989) Colloid Polym Sci 267:583

    Google Scholar 

  17. Kranig W, Boeffel C, Spiess HW (1990) Macromolecules 23:4061

    Google Scholar 

  18. Hsu TC, Hüser B, Pakula T, Spiess HW, Stamm M (1990) Makromol Chem 191:1597

    Google Scholar 

  19. Hentschel R, Spiess HW (1979) J Magn Reson 35:157

    Google Scholar 

  20. Hentschel D, Sillescu H, Spiess HW (1984) Polymer 25:1078

    Google Scholar 

  21. Torchia DA, Szabo A (1982) J Magn Reson 49:107

    Google Scholar 

  22. Spiess HW (1978) In: NMR basic principles and progress, Springer, Berlin, Vol 15, p 55

    Google Scholar 

  23. Wittebort RJ, Szabo A (1978) J Chem Phys 69:1722

    Google Scholar 

  24. Spiess HW (1985) In Kausch HH, Zachmann HG (eds) Advances in polymer science, Springer, Berlin, Vol 66, p 23

    Google Scholar 

  25. Miura H, Hirschinger J, English AD (1990) Macromolecules 23:2169

    Google Scholar 

  26. Luz Z, Vega AJ (1986) J Phys Chem 90:4903

    Google Scholar 

  27. Hirschinger J, Miura H, Gardner KH, English AD (1990) Macromolecules 23:2153

    Google Scholar 

  28. Hagemeyer A, Brombacher L, Schmidt-Rohr K, Spiess HW (1990) Chem Phys Lett 167:583

    Google Scholar 

  29. Kaufmann S, Wefing S, Schaefer D, Spiess HW (1990) J Chem Phys 93:197

    Google Scholar 

  30. Schaefer D, Rietz R, Meyer WH, Spiess HW (1991) Ber Bunsenges, Phys Chem, in press

  31. Leisen H, Werth M, Spiess HW, to be published

  32. Kranig W, Boeffel C, Spiess HW, Karthaus O, Wüstefeld R, Ringsdorf H (1990) Liquid crystals 8:375

    Google Scholar 

  33. Goldfarb D, Luz Z, Zimmermann H (1983) J Chem Phys 78:7065

    Google Scholar 

  34. Cotrait M, Mansau P, Pesquer M, Volpilhac V (1982) J Phys (Paris) 43:3352

    Google Scholar 

  35. Hirschinger J, English AD (1989) J Magn Reson 85:542

    Google Scholar 

  36. Kranig W (1990) PhD Thesis, University of Mainz

  37. Vallerien SU, Werth M, Kremer F, Spiess HW (1990) Liquid crystals 8:889

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschinger, J., Kranig, W. & Spiess, H.W. A deuteron NMR study of axial motion and side chain conformation in the mesophase of discotic liquid crystal main-chain polymers. Colloid Polym Sci 269, 993–1002 (1991). https://doi.org/10.1007/BF00657429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657429

Key words

Navigation