Colloid and Polymer Science

, Volume 271, Issue 4, pp 372–379 | Cite as

Prediction of maxima and minima in the curve of total sorption parameter in ternary polymer systems. Influence of ternary interaction parameter

  • C. M. Gómez
  • R. García
  • V. Soria
  • A. Campos
Original Contributions

Abstract

Flory-Huggins theory modified by Pouchly has been applied to predict maxima and minima in the curve of total sorption in ternary polymer systems formed by a polymer and two liquids. In this work, different diagrams based on experimental magnitudes easily obtained such as the difference in affinities of liquids, solvents and non solvents, and the solvent molar volume ratio. Total sorption parameter has been considered to be the decisive magnitude to define extrema conditions in both cosolvent and cononsolvent ternary polymer systems. The theoretical prediction is not altered by the inclusion of ternary interactions. Different examples of ternary systems dealing with vinyl polymers and polydimethyl siloxane have been used to test the above formalism.

Key words

Ternary polymer systems extrema thermodynamic behavior total sorption parameter Flory-Huggins theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dondos A, Rempp P, Benoit H (1970) J Polym Sci Part C 30:9Google Scholar
  2. 2.
    Chu SG, Munk P (1978) Macromolecules 11:879Google Scholar
  3. 3.
    Aminabhavi TM, Munk P (1979) Macromolecules 12:607Google Scholar
  4. 4.
    Nakata M, Numazawa A (1985) Macromolecules 18:1741Google Scholar
  5. 5.
    Radic D, Gargallo L (1981) Polymer 22:1045Google Scholar
  6. 6.
    Flory PJ (1953) Principles of Polymer Chemistry. Cornell Univ. Press, Ithaca, NYGoogle Scholar
  7. 7.
    Pouchly J, Zivny A (1972) J Polym Sci Part A-2 10:1481Google Scholar
  8. 8.
    Pouchly J, Zivny A (1982) Makromol Chem 183:3019Google Scholar
  9. 9.
    Gomez C, Soria V, Campos A (1992) Colloid Polym Sci 270:197Google Scholar
  10. 10.
    Pouchly J, Zivny A (1983) Makromol Chem 184:2081Google Scholar
  11. 11.
    Pouchly J, Zivny A, Solc K (1968) J Polym Sci Part C 23:245Google Scholar
  12. 12.
    Koningsveld R, Kleintjens LA (1971) Macromolecules 4:637Google Scholar
  13. 13.
    Gómez C, García R, Soria V, Campos A (submitted) Colloid Polym SciGoogle Scholar
  14. 14.
    Campos A, Gavara R, Tejero R, Gómez C, Celda B (1989) J Polym Sci Part B 27:1569Google Scholar
  15. 15.
    Horta A, Fernández-Pierola I (1981) Macromolecules 14:1519Google Scholar
  16. 16.
    Prolongo MG, Masegosa RM, Hernández-Fuentes I, Horta A (1981) Macromolecules 14:1526Google Scholar
  17. 17.
    Masegosa RM, Prolongo MG, Hernández-Fuentes I, Horta A (1984) Macromolecules 17:1181Google Scholar
  18. 18.
    Vázquez J, De Blas L, Prolongo MG, Hernandez-Fuentes I, Masegosa RM, Horta A (1984) Makromol Chem 185:797Google Scholar
  19. 19.
    Gavara R, Campos A, Figueruelo JE (1990) Makromol Chem 191:1899Google Scholar
  20. 20.
    Campos A, Gavara R, Tejero R, Gómez C, Celda B (1989) J Polym Sci Part B 27:1599Google Scholar
  21. 21.
    Campos A, Celda B, Tejero R, Figueruelo JE (1984) Eur Polym J 20:447Google Scholar
  22. 22.
    Campos A, Celda B, Mora J, Figueruelo JE (1984) Eur Polym J 20:1187Google Scholar
  23. 23.
    Celda B, Campos A, Tejero R, Figueruelo JE (1986) Eur Polym J 22:129Google Scholar
  24. 24.
    Celda B, Gómez C, Gavara R, Tejero R, Campos A (1987) Makromol Chem 188:2909Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • C. M. Gómez
    • 1
  • R. García
    • 1
  • V. Soria
    • 1
  • A. Campos
    • 1
  1. 1.Departament de Química FisicaUniversitat de ValenciaBurjassotSpain

Personalised recommendations