Colloid and Polymer Science

, Volume 271, Issue 4, pp 311–321 | Cite as

Cellulose-poly(vinyl pyrrolidone) blends studied by scanning electron microscopy and dynamic mechanical measurements

  • M. Paillet
  • J. Y. Cavaillé
  • J. Desbrières
  • D. Dupeyre
  • A. Péguy
Original Contributions


New polymer blends based on cellulose and poly(vinyl pyrrolidone) (PVP) were obtained using a mixture of N=methyl morpholine N-oxide (NMMO) and dimethylsulfoxide (DMSO) as a common solvent system. Materials are obtained after the removing of NMMO-DMSO in three of their different solvents, namely i) H2O, ii) a mixture 95/5 vol/vol hexamethyl phosphororri amide (HMPA) DMSO and iii) a mixture of 95/5 vol/vol dioxan/water.

Scanning electron microscopy techniques were extensively used and lead to the conclusion that all these blends in the composition range 25/75 w/w to 75/25 w/w cellulose/PVP are two-phase systems in which cellulose forms a continuous phase. Preliminary results from calorimetric and dynamic mechanical measurements confirm these observations. Furrthermore, it is shown that using dioxanwater preserves the initial cellulose PVP composition, allowing to get blends with the desired PVP fraction. Although it is not the case with HMPA/DMSO which dissolves a part of PVP, its use leads to assymmetric, porous structures.

Key words

Cellulose poly(vinyl pyrrolidone) polymer blend scanning electron microscopy dynamic mechanical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Linton GE (1966) Natural and Man-made Textile Fibers. Duell Sloan et Pearce, a division of Meridith Press, New YorkGoogle Scholar
  2. 2.
    Layman PL (1987) Chem Eng 6:9Google Scholar
  3. 3.
    Nishio Y, Roy SK, St J Manley R (1987) Polymer 28:1385Google Scholar
  4. 4.
    Jolan AH, Prud'Homme RE (1978) J Appl Polym Sci 22:2533Google Scholar
  5. 5.
    Nishio Y, Hirose N, Takahashi T (1989) Polym J. 21:347Google Scholar
  6. 6.
    Nishio Y, St J Manley R (1988) Macromolecules 21:1270Google Scholar
  7. 7.
    Nishio Y, St J Manley R (1990) Polym Eng Sci 30:71Google Scholar
  8. 8.
    Field ND, Song SS (1984) J Polym Sci Polym Phys 22:101Google Scholar
  9. 9.
    Masson JF, St J Manley R (1990) 33rd IUPAC MontrealGoogle Scholar
  10. 10.
    Shibayama M, Yamamoto T, Xiao CF, Sakurai S, Hayami A, Nomura S (1991) Polymer 32:1010Google Scholar
  11. 11.
    Barabas ES, Encyclopedia of Polymer Science and Engineering, Vol 17, 2nd ed. Wiley & Son, New YorkGoogle Scholar
  12. 12.
    Cavaillé JY, Jourdan C, Perez J (1988) Makromol Chem Symp 16:341Google Scholar
  13. 13.
    Chanzy H, Paillet M, Peguy A (1986) Polym Com 27:171Google Scholar
  14. 14.
    Tan YY, Challa G (1976) Polymer 17:739Google Scholar
  15. 15.
    Turner DT, Schwartz A (1985) Polymer 26:757Google Scholar
  16. 16.
    Kerner EH (1956) Proc Phys Soc B69:808Google Scholar
  17. 17.
    Dickie RA (1973) J Appl Polym Sci 17:45Google Scholar
  18. 18.
    Halpin JC, Kardos JL (1972) J Appl Phys 43:2235Google Scholar
  19. 19.
    Hashin Z (1983). J Appl Mechanics 50:481Google Scholar
  20. 20.
    Lewis TB, Nielsen LE (1970) J Appl Polym Sci 14:1449Google Scholar
  21. 21.
    Ouali N, Cavaillé JY, Perez J (1991) Plastics Rubber Composites Processing and Applications 16:55Google Scholar
  22. 22.
    Skjak-Broek G, Grasdalen H, Smidsrod O (1989) Carbohydr Polym 10:31Google Scholar
  23. 23.
    Masson JF, St J Manley R (1992) Macromolecules 24:5914Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • M. Paillet
    • 1
  • J. Y. Cavaillé
    • 1
  • J. Desbrières
    • 1
  • D. Dupeyre
    • 1
  • A. Péguy
    • 1
  1. 1.Centre de Recherche sur les Macromolécules VégétalesGrenoble cedexFrance

Personalised recommendations