Advertisement

Colloid and Polymer Science

, Volume 271, Issue 5, pp 446–453 | Cite as

Phenylene motion in polycarbonate: Influence of tensile stress and chemical modification

  • M. T. Hansen
  • C. Boeffel
  • H. W. Spiess
Original Contributions

Abstract

Deuteron NMR was utilized to study phenylene group motions in glassy polycarbonate (PC) as a function of tensile stress and chemical modification. A special stretching device was constructed allowing the application of forces up to 1500 N during the measurement. While cold drawing of PC effects motional restrictions equivalent to a temperature shift of 10 K, a reversible strain near the yield point enhances the ring dynamics slightly. Methyl group substitution at the ortho positions gives rise to even more constraints, shifting the onset of fast ring flips by about 180 K.

Key words

Polycarbonates molecular motions 2H NMR tensile stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schnell H (1964) Chemistry and Physics of Polycarbonares. Interscience, New YorkGoogle Scholar
  2. 2.
    Kircher K (1987) Kunststoffe 77:993; (1990) Kunststoffe 80:1113Google Scholar
  3. 3.
    Illers KH, Breuer H (1961) Kolloid-Z 176:110Google Scholar
  4. 4.
    Litt MH, Torp SJ (1973) Appl Phys 44:4282Google Scholar
  5. 5.
    Yee AF, Smith SA (1981) Macromolecules 14:54Google Scholar
  6. 6.
    Spiess HW (1983) Colloid & Polymer Science 261:193Google Scholar
  7. 7.
    Wehrle M, Hellmann GP, Spiess HW (1987) Colloid & Polymer Science 265:815Google Scholar
  8. 8.
    Inglefield PT, Amici RM, O'Gara JF, Hung C-C, Jones AA (1983) Macromolecules 16:1552Google Scholar
  9. 9.
    Schaefer J, Stejskal EO, McKay RA, Dixon WT (1984) Macromolecules 17:1479Google Scholar
  10. 10.
    Jones AA (1986) In: Komoroski RA (ed) High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk. VCH, Weinheim, pp 247–281Google Scholar
  11. 11.
    Fischer EW, Hellmann GP, Spiess HW, Hörth FJ, Ecarius U, Wehrle M (1985) Macromol Chem Suppl 12:189Google Scholar
  12. 12.
    Schaefer D, Hansen M, Blümich B, Spiess HW (1991) J Non-Cryst Solids 131–133:777Google Scholar
  13. 13.
    Hansen MT, Blümich B, Boeffel C, Spiess HW, Morbitzer L, Zembrod A (1992) Macromolecules 25:5542Google Scholar
  14. 14.
    Hansen MT, Kulik A, Prins KO, Spiess HW (1992) Polymer Communications 33 (10):2231Google Scholar
  15. 15.
    Zimmermann H (1989) Liqu Cryst 4:591Google Scholar
  16. 16.
    Hansen MT (1991) PhD thesis, University of MainzGoogle Scholar
  17. 17.
    Hentschel D, Sillescu H, Spiess HW (1984) Polymer 25:1078Google Scholar
  18. 18.
    Schmidt C, Blümich B, Spiess HW (1988) J Magn Reson 79:269Google Scholar
  19. 19.
    Spiess HW (1991) Annu Rev Mater Sci 21:131Google Scholar
  20. 20.
    Krimm H, Peilstöcker G (1973) In: Vieweg R, Goerden L (eds) Kunststoff-Handbuch. C Hanser, München, Vol VIII, pp 1–245Google Scholar
  21. 21.
    Koenen JA, Heise B, Kilian HG (1989) J Polym Sci 27:1235Google Scholar
  22. 22.
    Jho JY, Yee AF (1990) Polymer Preprints 31(1):531Google Scholar
  23. 23.
    Schmidt C (1984) Diploma thesis, University of MainzGoogle Scholar
  24. 24.
    Wehrle M (1986) PhD thesis, University of MainzGoogle Scholar
  25. 25.
    Sundararajan PR (1989) Macromolecules 22:2149Google Scholar
  26. 26.
    Hutnik M, Argon AS, Suter UW (1991) Macromolecules 24:5970Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • M. T. Hansen
    • 1
  • C. Boeffel
    • 1
  • H. W. Spiess
    • 1
  1. 1.Max-Planck-Institut für PolymerforschungMainzFRG

Personalised recommendations