Skip to main content
Log in

Stress dependence of the Fermi surface of antiferromagnetic chromium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The uniaxial stress dependence of extremal cross sections of the Fermi surface of antiferromagnetic chromium has been determined by simultaneously measuring the oscillatory magnetostriction and the de Haas-van Alphen torque. The stress dependence data permit identification of a set of pseudoharmonic frequency branches as resulting from magnetic breakdown between the intersecting hole ellipsoids, which are obtained by remapping the Fermi surface of paramagnetic chromium to include the magnetic band gaps produced by the spin density wave of wave vectorQ incommensurate with the lattice. The stress dependence ofQ is very small, an unexpected result in view of the strong stress dependence of the Néel temperature. The stress dependence of the Fermi surface of paramagnetic chromium thus dominates the behavior, and is found to resemble closely that of the other group VI metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arrott,Magnetism, Vol. IIB, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966), p. 295.

    Google Scholar 

  2. W. M. Lomer,Proc. Phys. Soc. (London)80, 489 (1962).

    Google Scholar 

  3. A. W. Overhauser,Phys. Rev. 128, 1437 (1962).

    Google Scholar 

  4. W. M. Lomer, inProc. Int. Conf. Magnetism, Nottingham, 1964 (The Institute of Physics and the Physical Society, London, 1965), p. 127.

  5. J. E. Graebner and J. A. Marcus,Phys. Rev. 175, 659 (1968).

    Google Scholar 

  6. B. R. Watts,Phys. Lett. 10, 275 (1964).

    Google Scholar 

  7. J. E. Graebner, inProc. 12th Int. Conf. Low Temp. Phys., Kyoto, Japan, E. Kanda, ed. (Academic Press of Japan, Kyoto, Japan, 1971), p. 6010.

  8. S. Asano and J. Yamashita,J. Phys. Soc. Japan 23, 714 (1967).

    Google Scholar 

  9. A. J. Arko, J. A. Marcus, and W. A. Reed,Phys. Rev. 176, 671 (1968);185, 901 (1969).

    Google Scholar 

  10. L. M. Falicov and P. R. Sievert,Phys. Rev. 138A, 88 (1965).

    Google Scholar 

  11. W. D. Wallace and H. V. Bohm,J. Phys. Chem. Solids 29, 721 (1968).

    Google Scholar 

  12. D. F. Snider and R. L. Thomas,Phys. Rev. B 3, 1091 (1971).

    Google Scholar 

  13. R. Griessen, D. J. Stanley, and E. Fawcett,Solid State Comm., to be published.

  14. R. Griessen, M. J. G. Lee, and D. Stanley,Phys. Rev., to be published.

  15. D. J. Stanley, J. M. Perz, M. J. G. Lee, and R. Griessen, to be published.

  16. E. Fawcett,Phys. Lett. 32A, 117 (1970).

    Google Scholar 

  17. H. Umbeyashi, G. Shirane, B. C. Frazer, and W. B. Daniels,J. Phys. Soc. Japan 24, 368 (1968).

    Google Scholar 

  18. J. Rath and J. Callaway,Phys. Rev. B 8, 5398 (1973).

    Google Scholar 

  19. P. A. Fedders and P. C. Martin,Phys. Rev. 143, 245 (1966).

    Google Scholar 

  20. T. M. Rice,Phys. Rev. B 2, 3619 (1970).

    Google Scholar 

  21. A. Kotani,J. Phys. Soc. Japan 38, 974 (1975).

    Google Scholar 

  22. J. C. Kimball and L. M. Falicov,Phys. Rev. Lett. 20, 1169 (1968).

    Google Scholar 

  23. J. C. Kimball,Phys. Rev. 183, 533 (1969).

    Google Scholar 

  24. S. A. Werner, A. Arrott, and H. Kendrick,Phys. Rev. 155, 528 (1967).

    Google Scholar 

  25. R. Griessen and R. S. Sorbello,J. Low Temp. Phys. 16, 237 (1974).

    Google Scholar 

  26. M. Posternak, W. B. Waeber, R. Griessen, W. Joss, W. van der Mark, and W. Wejgaard,J. Low Temp. Phys. 21, 47 (1975).

    Google Scholar 

  27. G. Brandli and R. Griessen,Cryogenics 13, 299 (1973).

    Google Scholar 

  28. M. O. Steinitz, J. P. Kalejs, J. M. Perz, and E. Fawcett,J. Phys. F: Metal Phys. 3, 617 (1973).

    Google Scholar 

  29. R. G. Chambers,Proc. Phys. Soc. (London)88, 701 (1966).

    Google Scholar 

  30. R. Griessen and A. Kundig,Solid State Comm. 11, 295 (1972).

    Google Scholar 

  31. E. J. Gutman and J. L. Stanford,Phys. Rev. 4, 4020 (1971).

    Google Scholar 

  32. D. I. Bolef and J. de Klerk,Phys. Rev. 129, 1063 (1963).

    Google Scholar 

  33. J. B. Ketterson, D. D. Koelling, J. C. Shaw, and L. R. Windmiller,Phys. Rev. B 11, 1447 (1975).

    Google Scholar 

  34. R. F. Girvan, A. V. Gold, and R. A. Phillips,J. Phys. Chem. Solids 29, 1485.

  35. F. H. Featherston and J. R. Neighbours,Phys. Rev. 130, 1324 (1963).

    Google Scholar 

  36. T. Mitsui and C. T. Tomizuka,Phys. Rev. 137A, 564 (1965).

    Google Scholar 

  37. D. B. McWhan and T. M. Rice,Phys. Rev. Lett. 19, 846 (1967).

    Google Scholar 

  38. G. C. Fletcher and C. F. Osborne,J. Phys. F 3, L22 (1973).

  39. T. M. Rice and D. B. McWhan,IBM J. Res. Dev. 251 (1970).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fawcett, E., Griessen, R. & Stanley, D.J. Stress dependence of the Fermi surface of antiferromagnetic chromium. J Low Temp Phys 25, 771–792 (1976). https://doi.org/10.1007/BF00657298

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657298

Keywords

Navigation