Journal of Low Temperature Physics

, Volume 25, Issue 5–6, pp 671–676 | Cite as

A comment on rotons in two-dimensional liquid helium II

  • W. Götze
  • M. Lücke
Article

Abstract

The spectrum of rotons in two-dimensional liquid helium II is estimated within the Bijl-Feynman theory. Due to stronger short-range order and more effective back flow, the roton gap Δ is found to be about half as big as the bulk roton energy.

Keywords

Helium Magnetic Material Liquid Helium Back Flow Roton Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. M. Pobell, H. W. Chan, L. R. Corruccini, R. P. Henkel, S. W. Schwenterly, and J. D. Reppy,Phys. Rev. Lett. 28, 542 (1972); M. Chester and L. C. Yang,Phys. Rev. Lett. 31, 1377 (1973).Google Scholar
  2. 2.
    J. H. Scholtz, E. O. McLean, and I. Rudnick,Phys. Rev. Lett. 32, 147 (1974); T. E. Washburn, J. E. Rutledge, and J. M. Mochel,Phys. Rev. Lett. 34, 183 (1975).Google Scholar
  3. 3.
    T. C. Padmore,Phys. Rev. Lett. 28, 1512 (1972); G. Haug,J. Low Temp. Phys. 12, 479 (1973); T. C. Padmore and J. D. Reppy,Phys. Rev. Lett. 33, 1410 (1974).Google Scholar
  4. 4.
    C. G. Kuper,Physica 24, 1009 (1958).Google Scholar
  5. 5.
    L. S. Rent and I. Z. Fisher,Zh. Eksp. Teor. Fiz. 60, 1814 (1971); A. F. Andreev and D. A. Kompaneets,Zh. Eksp. Teor. Fiz. 61, 2459 (1971); D. O. Edwards, J. R. Eckhardt, and F. M. Gasparini,Phys. Rev. A 9, 2070 (1964).Google Scholar
  6. 6.
    Marvin Chester and L. Eytel,Phys. Rev. B 13, 1069 (1976).Google Scholar
  7. 7.
    T. C. Padmore,Phys. Rev. Lett. 32, 826 (1974).Google Scholar
  8. 8.
    D. C. Hickernell, E. O. McLean, and O. E. Vilches,Phys. Rev. Lett. 28, 789 (1972); M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E. Vilches,Phys. Rev. A 8, 1589 (1973).Google Scholar
  9. 9.
    D. J. Bishop, J. M. Parpia, and J. D. Reppy, inProc. 14th Int. Conf. Low Temp. Phys., M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 1, p. 380.Google Scholar
  10. 10.
    G. J. Coellner, J. G. Daunt, and E. Lerner,J. Low Temp. Phys. 21, 347 (1975); A. D. Navaco,J. Low Temp. Phys. 21, 359 (1975).Google Scholar
  11. 11.
    R. P. Feynman,Phys. Rev. 91, 1291, 1301 (1953);94, 262 (1954).Google Scholar
  12. 12.
    A. Bijl,Physica 7, 869 (1940).Google Scholar
  13. 13.
    J. Frenkel,Kinetic Theory of Liquids (Dover, New York, 1955), Chapter III, § 4.Google Scholar
  14. 14.
    E. K. Achter and L. Meyer,Phys. Rev. 188, 291 (1969).Google Scholar
  15. 15.
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York).Google Scholar
  16. 16.
    R. P. Feynman, InProgress in Low Temp. Phys. I, C. J. Gorter, ed. (North-Holland Publishing, Amsterdam, 1955), p. 17.Google Scholar
  17. 17.
    W. Brenig,Z. Phys. 144, 488 (1956).Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, Oxford, 1959), Chapter I, §§ 10, 11.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • W. Götze
    • 1
  • M. Lücke
    • 2
  1. 1.Physik-Department der Technischen Universität, and Max-Planck-Institut für PhysikMünchenGermany
  2. 2.Department of PhysicsHarvard UniversityCambridge

Personalised recommendations