Journal of comparative physiology

, Volume 135, Issue 3, pp 243–250 | Cite as

Phototaxis of a sand-beach amphipod: Physiology and tidal rhythms

  • Richard B. ForwardJr.


  1. 1.

    The response spectrum for phototaxis of the sand-beach amphipodSynchelidium sp. shows relatively uniform responsiveness from 460 to 600 nm (Fig. 1).

  2. 2.

    Animals on rising tides are more negatively phototactic and less sensitive to light than on falling tides (Fig. 2).

  3. 3.

    When suddenly stimulated with light on rising tides, they show an initial positive phototaxis, which quickly reverses to negative. Similar stimulation on falling tides evokes either continuous positive phototaxis or a positive response which reverses to negative after a much longer time than on rising tides.

  4. 4.

    Freshly collected animals have tidal rhythms in the general sign of phototaxis (more positive on falling tides) (Fig. 4) and the reversal in phototactic sign from positive to negative upon sudden stimulation with light (Fig. 3). These rhythms are endogenous and tidal, since they persist under constant conditions, and the timing is dependent upon natural tidal times. In addition, a circadian rhythm in sensitivity is suggested, in which they have a lower intensity threshold for phototaxis at night than during the day (Fig. 6).

  5. 5.

    It is proposed that these photoresponses are functionally significant during migration up the beach in the swash zone on rising tides and down the beach on falling tides.



Migration Beach Lower Intensity General Sign Circadian Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benitt, R.: Diurnal rhythm in the proximal pigment cells of the crayfish retina. Physiol. Zool.5, 65–69 (1932)Google Scholar
  2. Benson, J.A., Lewis, R.D.: An analysis of the activity rhythm of the sand beach amphipodTalorchestia quoyana. J. Comp. Physiol.105, 339–352 (1976)Google Scholar
  3. Blest, A.D., Day, W.A.: The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: A daily rhythm. Proc. R. Soc. London (Biol.)200, 463–483 (1978)Google Scholar
  4. Eguchi, E., Waterman, T.H.: Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membrane. Cell Tissue Res.169, 419–434 (1976)Google Scholar
  5. Enright, J.T.: Distribution, population dynamics and behavior of a sand beach crustaceanSynchelidium sp. Ph.D. thesis, University of California at Los Angeles (1961a)Google Scholar
  6. Enright, J.T.: Pressure sensitivity of an amphipod. Science133, 758–760 (1961b)Google Scholar
  7. Enright, J.T.: Responses of an amphipod to pressure changes. Comp. Biochem. Physiol.7, 131–145 (1962)Google Scholar
  8. Enright, J.T.: The tidal rhythm of activity of a sand-beach amphipod. Z. Vergl. Physiol.40, 276–313 (1963)Google Scholar
  9. Fincham, A.A.: Rhythmic behavior of the intertidal amphipodBathyporeia pelagica. J. Mar. Biol. Ass. U.K.50, 1057–1068 (1970)Google Scholar
  10. Fincham, A.A.: Rhythmic swimming and rheotropism in the amphipodMarinogammarus marinus (Leach). J. Exp. Mar. Biol. Ecol.8, 19–26 (1972)Google Scholar
  11. Fingerman, M., Lowe, M.: Twenty-four hour rhythm of distal retinal pigment migration in the dwarf crayfish. J. Cell. Comp. Physiol.50, 371–379 (1957)Google Scholar
  12. Fleissner, G.: Circadiane Adaptation und Schirmpigmentverlagerung in den Sehzellen der Medianaugen vonAndroctonus australis L. (Buthidae, Scorpiones). J. Comp. Physiol.91, 399–416 (1974)Google Scholar
  13. Forward, R.B., Jr.: Light and diurnal vertical migration: Photobehavior and photophysiology of plankton. In: Photochemical and photobiological reviews, Vol 1. Smith, K. (ed.), pp. 157–209. New York: Plenum Publishing Corp. 1976Google Scholar
  14. Goldsmith, T.H., Fernandez, H.R.: Comparative studies of crustacean spectral sensitivity. Z. Vergl. Physiol.60, 156–175 (1968)Google Scholar
  15. Jerlov, N.G.: Marine optics. Amsterdam: Elsevier 1976Google Scholar
  16. Morgan, E.: The activity rhythm of the amphipodCorophium volutator and its possible relationship to changes in hydrostatic pressure associated with the tides. J. Anim. Ecol.34, 731–746 (1965)Google Scholar
  17. Nässel, D.R., Waterman, T.H.: Massive diurnal modulated photoreceptor membrane turnover in crab light and dark adaptation. J. Comp. Physiol.131, 205–216 (1979)Google Scholar
  18. Nosaki, H.: Electrophysiological study of color encoding in the compound eye of crayfishProcambarus clarkii. Z. Vergl. Physiol.64, 318–323 (1969)Google Scholar
  19. Palmer, J.D.: Tidal rhythms: the clock control of the rhythmic physiology of marine organisms. Biol. Rev.48, 377–418 (1973)Google Scholar
  20. Palmer, J.F., Round, F.E.: Persistent, vertical migration rhythms in benthic microflora VI. The tidal and diurnal nature of the rhythm in the diatomHantzschia virgata. Biol. Bull.132, 44–55 (1967)Google Scholar
  21. Preece, G.S.: The swimming rhythm ofBathyporeia pilosa (Crustacea: Amphipoda) J. Mar. Biol. Ass. U.K.51, 777–791 (1971)Google Scholar
  22. Ritz, D.A.: Behavioral response to light of the newly hatched phyllosoma larvae ofPanulirus longipes cygnus George (Crustacea: Decapoda: Palinuridae). J. Exp. Mar. Biol. Ecol.10, 105–114 (1972)Google Scholar
  23. Wald, G.: Visual pigments of crayfish. Nature London215, 1131–1133 (1967)Google Scholar
  24. Wald, G.: Single and multiple visual systems in arthropods. J. Gen. Physiol.51, 125–156 (1968)Google Scholar
  25. Walpole, R.E.: Introduction to Statistics. New York: Macmillian 1974Google Scholar
  26. Waterman, T.H., Fernandez, H.R.: E-vector and wavelength discrimination by retinula cells of the crayfishProcambarus. Z. Vergl. Physiol.68, 154–174 (1970)Google Scholar
  27. Welsh, J.H.: The sinus gland and 24 hour cycles of retinal pigment migration in the crayfish. J. Exp. Zool.86, 25–49 (1941)Google Scholar
  28. Wildish, D.J.: Locomotory activity rhythms in some littoralOrchestia (Crustacea: Amphipoda). J. Mar. Biol. Ass. U.K.50: 241–252 (1970)Google Scholar
  29. Young, S.: Directional differences in the colour sensitivity ofDaphnia magna. J. Exp. Biol.61, 261–267 (1974)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Richard B. ForwardJr.
    • 1
    • 2
  1. 1.Duke University Marine LaboratoryBeaufortUSA
  2. 2.Department of ZoologyDuke UniversityDurhamUSA

Personalised recommendations