Skip to main content
Log in

Tomasch effect and superconducting proximity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Tunneling conductance measurements (dI/dV)(V) on thick and clean super-conducting films (S 1 ) backed by normal metals (M 2 ) show geometrical resonance effects, which have been associated with the variation δΔ(x) of the pair potential near the interface. We analyze both theoretically and experimentally the three factors involved in the resonance effect on S 1 /M 1 sandwiches where one of the films is superconducting. The first factor, period, has already received considerable attention and is connected with the ratioV * F /d 1 of the renormalized Fermi velocity and the thicknessd 1 of the film S 1 . We show that generally subharmonic effects, related to multiple interference effects, are expected. This result is demonstrated experimentally on Pb/M 2 sandwiches. The phase depends on the sign of δΔ(x), the detailed shape of its variation, and on the nature of the tunneling process. Unfortunately the interplay among these parameters is difficult to analyze, although directive tunneling is found to fit better with experiments than the generally assumed diffuse tunneling. The amplitude of the resonance should be proportional to the change of δΔ(x). The ambiguity in the experimental results is pointed out and an experiment that shows clearly the role of the superconducting proximity mechanisms is described where the proximity on several simultaneously prepared Pb/Al films is controlled by deposition of various third upper layers. The theoretical discussion is an extension of the Ishii matrix formulation, itself based on an application of the Andreev scattering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Tomasch, inTunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum Press, New York, 1969), p. 315.

    Google Scholar 

  2. W. L. McMillan and P. W. Anderson,Phys. Rev. Lett. 16, 85 (1966).

    Google Scholar 

  3. P. Nédellec, L. Dumoulin, and E. Guyon,Ann. Phys., to be published.

  4. P. Nédellec and E. Guyon,Solid State Comm. 9, 113 (1971).

    Google Scholar 

  5. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  6. A. F. Andreev,Soviet Phys.—JETP 19, 1228 (1964).

    Google Scholar 

  7. R. Kümmel,Z. Phys. 218, 472 (1969).

    Google Scholar 

  8. A. B. Pippard, J. G. Shepherd, and D. A. Tindall,Proc. R. Soc. Lond. A 324, 17 (1971).

    Google Scholar 

  9. J. Clarke,Proc. R. Soc. Lond. A 308, 447 (1969).

    Google Scholar 

  10. T. Wolfram,Phys. Rev. 170, 481 (1968).

    Google Scholar 

  11. P. Nédellec, Thesis, Orsay, 1975.

  12. G. Deutscher and P. G. de Gennes, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 1005.

    Google Scholar 

  13. C. Ishii,Prog. Theor. Phys. 44, 1525 (1970).

    Google Scholar 

  14. W. L. McMillan,Phys. Rev. 175, 559 (1968).

    Google Scholar 

  15. J. R. Schrieffer, inTunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum Press, New York, 1969), p. 287.

    Google Scholar 

  16. Y. Nambu,Phys. Rev. 117, 648 (1960).

    Google Scholar 

  17. G. M. Eliashberg,Soviet Phys.—JETP 11, 696 (1960).

    Google Scholar 

  18. W. L. McMillan and J. M. Rowell, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 561.

    Google Scholar 

  19. K. Maki and A. Griffin,Phys. Rev. 150, 356 (1966).

    Google Scholar 

  20. J. M. Rowell and W. L. McMillan,Phys. Rev. Lett. 16, 453 (1966).

    Google Scholar 

  21. P. Nédellec, L. Dumoulin, and E. Guyon,Solid State Commun. 9, 2013 (1971).

    Google Scholar 

  22. P. G. de Gennes and D. Saint James,Phys. Lett. 4, 151 (1963).

    Google Scholar 

  23. D. Saint James,J. Phys. 25, 899 (1964).

    Google Scholar 

  24. D. Bellanger, J. Klein, A. Leger, M. Belin, and D. Défourneau,Phys. Lett. 424, 459 (1973).

    Google Scholar 

  25. J. M. Rowell,Phys. Rev. Lett. 30, 167 (1973).

    Google Scholar 

  26. J. M. Rowell,J. Vac. Sci. Technol. 10, 702 (1973).

    Google Scholar 

  27. S. L. Colucci, W. J. Tomasch, and Hyung Joon Lee,Phys. Rev. Lett. 32, 590 (1974).

    Google Scholar 

  28. W. T. Band and G. B. Donaldson,Phys. Rev. Lett. 31, 20 (1973).

    Google Scholar 

  29. P. Nédellec and E. Guyon,C. R. Acad. Sci. (Paris)B 278, 413 (1974).

    Google Scholar 

  30. P. Manuel, Thesis, Orsay, 1974.

  31. L. Dumoulin, Thesis, Orsay, 1975.

  32. L. Dumoulin, E. Guyon, and P. Nédellec,J. Phys. 34, 1021 (1973).

    Google Scholar 

  33. J. M. Rowell and W. L. McMillan,Physica 55, 718 (1971).

    Google Scholar 

  34. W. J. Tomasch,Phys. Lett. 26A, 379 (1968).

    Google Scholar 

  35. K. L. Chopra and M. R. Randlett,J. Appl. Phys. (U.S.)38, 3144 (1967).

    Google Scholar 

  36. W. L. McMillan,Phys. Rev. 175, 537 (1968).

    Google Scholar 

  37. T. W. Haywood and E. M. Mitchell,Phys. Rev. B 10, 876 (1974).

    Google Scholar 

  38. C. Valette, Thesis, Orsay, 1971.

  39. Orsay Group on Superconductivity,Phys. Kondens. Mater. 6, 307 (1967).

    Google Scholar 

  40. P. G. de Gennes and J. P. Hurault,Phys. Lett. 17, 181 (1965).

    Google Scholar 

  41. G. I. Rochlin,Phys. Rev. 153, 513 (1967).

    Google Scholar 

  42. G. I. Lykken, A. L. Geiger, K. S. Dy, and E. N. Mitchell,Phys. Rev. B 4, 1523 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nédellec, P., Dumoulin, L. & Guyon, E. Tomasch effect and superconducting proximity. J Low Temp Phys 24, 663–694 (1976). https://doi.org/10.1007/BF00657173

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657173

Keywords

Navigation