Advertisement

Journal of comparative physiology

, Volume 137, Issue 3, pp 215–231 | Cite as

Chromatic properties of identified interneurons in the optic lobes of the bee

  • Horst Hertel
Article

Summary

The properties of bee medulla and lobula neurons were investigated using intracellular recordings and light stimuli of different qualities. The intracellular injection of dye permitted the examination of the structure and position of neurons studied electrophysiologically. Examples of different coding mechanisms are given; transitional stages were also found.
  1. 1.

    Broad band neurons have response/intensity curves for different wavelengths in the same range of intensity; the absolute value of intensity for this range may be different for ON and OFF reactions.

     
  2. 2.

    Narrow band units show high sensitivity to only a small portion of the spectrum. The maximum sensitivity sometimes lies between the sensitivity maximum of different photoreceptors.

     
  3. 3.

    Intensity band neurons react to a small intensity range, and show no reaction to light of neighboring intensities.

     
  4. 4.

    Color specific mechanisms are evident in antagonistic reactions to different colors of the test light. In medullar neurons this component of reaction was phasic, in lobular neurons tonic.

     
  5. 5.

    Receptive fields of 1/3 of medulla neurons are smaller than 30°; those of lobula neurons are greater than 30°.

     
  6. 6.

    Some fibres show spatial antagonism: light elicits excitation in one part of the receptive field and inhibition in the other. Fields lack antagonistic center-surround structure.

     
  7. 7.

    Several neurons are sensitive to movement of a light stimulus. In the medulla these always had small receptive fields, in the lobula wide receptive fields. Directional selectivity occasionally occurred in the lobula.

     

Keywords

Receptive Field Light Stimulus Intracellular Recording Optic Lobe Transitional Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, D.W.: Spatial and temporal integration properties of units in first optic ganglion of dipterans. J. Neurophysiol.35, 429–444 (1972)Google Scholar
  2. Autrum, H., Zwehl, V. von: Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. Vergl. Physiol.48, 357–384 (1964)Google Scholar
  3. Daumer, K.: Reizmetrische Untersuchungen des Farbensehens der Bienen. Z. Vergl. Physiol.38, 413–478 (1956)Google Scholar
  4. DeValois, R.L.: Central mechanisms of colour vision. In: Handbook of sensory physiology, Vol. VII/3A. Jung R. (ed.), pp. 209–254. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  5. Erber, J., Menzel, R.: Visual interneurons in the median protocerebrum of the bee. J. Comp. Physiol.121, 65–77 (1977)Google Scholar
  6. Frisch, K. von: Der Farbensinn und Formensinn der Bienen. Zool. J. Physiol.37, 1–238 (1914)Google Scholar
  7. Heiversen, O. von: Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. Comp. Physiol.80, 439–472 (1972)Google Scholar
  8. Hering, E.: Zur Lehre vom Lichtsinn. Wien: Karl Gerolds Sohn 1878Google Scholar
  9. Honegger, H.-W.: Sustained and transient responding units in the medulla of the cricketGryllus campestris. J. Comp. Physiol.125, 259–266 (1978)Google Scholar
  10. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol.160, 106–154 (1962)Google Scholar
  11. Kaiser, W., Seidl, R., Vollmar, J.: Participation of all three colour receptors in phototactic behaviour of fixed walking honeybees. J. Comp. Physiol.122, 27–44 (1977)Google Scholar
  12. Kien, J., Menzel, R.: Chromatic properties of interneurons in the optic lobes of the bee. I. J. Comp. Physiol.113, 17–34 (1977a)Google Scholar
  13. Kien, J., Menzel, R.: Chromatic properties of interneurons in the optic lobes of the bee. II. J. Comp. Physiol.113, 35–53 (1977b)Google Scholar
  14. McIlwain, J.T.: Large receptive fields and spatial transformations in the visual system. In: Neurophysiology II, Vol. 10. Porter, R. (ed.), pp. 223–248. Baltimore: University Park Press 1976Google Scholar
  15. Menzel, R.: Spectral sensitivity of monopolar cells in the bee lamina. J. Comp. Physiol.93, 337–346 (1974)Google Scholar
  16. Menzel, R.: Spectral sensitivity and colour vision in invertebrates. In: Handbook of sensory physiology, Vol. VII/6A. Autrum, H. (ed.), pp. 504–566. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  17. Menzel, R., Blakers, M.: Colour receptors in the bee eye — morphology and spectral sensitivity. J. Comp. Physiol.108, 11–33 (1976)Google Scholar
  18. Michael, C.R.: Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. J. Neurophysiol.41, 1233–1249 (1978)Google Scholar
  19. Mimura, K.: Movement discrimination by the visual system of flies. Z. Vergl. Physiol.73, 105–138 (1971)Google Scholar
  20. Mimura, K.: Analysis of visual information in lamina neurones of the fly. J. Comp. Physiol.88, 335–347 (1974)Google Scholar
  21. Ribi, W.A.: The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell Tissue Res.165, 103–112 (1975)Google Scholar
  22. Ribi, W.A.: The first optic ganglion of the bee. II. Topographical relationship of the monopolar cells within and between cartridges. Cell Tissue Res.171, 359–374 (1976)Google Scholar
  23. Riehle, A.: Reaktionsmuster zentraler visueller Interneurone der Honigbiene (Apis mellifera c.) auf hetero-chromatisches Flickerlicht. Dissertation am FB 23 der Freien Universität Berlin (1980)Google Scholar
  24. Strausfeld, N.: Atlas of an insect brain. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  25. Swihart, S.L.: Colour vision and the physiology of the superposition eye of a butterfly (Hesperiidae). J. Insect Physiol.15, 1347–1365 (1969)Google Scholar
  26. Swihart, S.L.: Modelling the butterfly visual pathway. J. Insect Physiol.18, 1915–1928 (1972a)Google Scholar
  27. Swihart, S.L.: The neural basis of colour vision in the butterflyHeliconius erato. J. Insect Physiol.18, 1015–1025 (1972b)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Horst Hertel
    • 1
  1. 1.Arbeitsgruppe Neurobiologie, Institut für TierphysiologieFreie Universität BerlinBerlin 41

Personalised recommendations