Journal of comparative physiology

, Volume 124, Issue 3, pp 249–257 | Cite as

Eye-scanning during walking in the crabLeptograpsus variegatus

  • D. C. Sandeman
Article

Summary

The eyes of the crabLeptograpsus variegatus scan continually when the animal walks. The scanning movements are in the horizontal plane, have an amplitude of between 0.1° and 0.3° and a frequency of about 6 Hz if the animal is surrounded by a bright, contrasting visual field. The scanning movements are abolished if the animal is placed in the dark, or blinded. During scanning the two eyes are predominantly in phase with each other. It is proposed that the scanning is the result of a general increase of activity in the oculomotor neurons during walking, which causes the eyes to oscillate at a frequency which is set by the properties of the optokinetic feedback system. It is suggested that the main function of scanning is to prevent visual adaptation.

Keywords

Visual Field Horizontal Plane Main Function General Increase Feedback System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, W.J.P., Horridge, G. A.: Interaction of the movements of the two eyecups in the crabCarcinus. J. exp. Biol.50, 651–671 (1969)Google Scholar
  2. Bethe, A.: Das Nervensystem vonCarcinus maenas, ein anatomisch-physiologischer Versuch. I. Theil, I. Mittheil. Arch. mikr. Anat.50, 460–546 (1897)Google Scholar
  3. Ditchburn, R.W., Drysdale, A.E.: The effect of retinal movements on vision. I. Step-movements and pulse-movements. Proc. roy. Soc. B197, 131–144 (1977a)Google Scholar
  4. Ditchburn, R.W., Drysdale, A.E.: The effect of retinal movements on vision. II. Oscillatory movements. Proc. roy. Soc. B197, 385–406 (1977b)Google Scholar
  5. Ditchburn, R.W., Ginsborg, B.L.: Vision with a stabilised retinal image. Nature (Lond.)170, 36–37 (1952)Google Scholar
  6. Erber, J., Sandeman, D.C.: The detection of real and apparent motion by the Australian rock crab,Leptograpsus variegatus. II. Electrophysiology. J. comp. Physiol.112, 189–197 (1976)Google Scholar
  7. Franceschini, N., Kirschfeld, K.: Les phénomènes de pseudopupille dans l'oeil composé deDrosophila. Kybernetik9, 159–182 (1971)Google Scholar
  8. Gerrits, H.J.M., Vendrik, A.J.H.: Eye movements necessary for continuous perception during stabilization of retinal images. Bibl. Ophthal.82, 339–347 (1972)Google Scholar
  9. Gregory, R.L., Ross, H.E., Moray, N.: The curious eye ofCopilia. Nature (Lond.)201, 1166 (1964)Google Scholar
  10. Hengstenberg, R.: Das Augenmuskelsystem der StubenfliegeMusca domestica. I. Analyse der ‘clock-spikes’ und ihre Quellen. Kybernetik2, 56–77 (1971)Google Scholar
  11. Horridge, G.A., Burrows, M.: Tonic and phasic systems in parallel in the eyecup responses of the crabCarcinus. J. exp. Biol.49, 269–284 (1968)Google Scholar
  12. Kirschfeld, K.: The resolution of lens and compound eyes. In: Neural principles in vision (eds. F. Zettler, R. Weiler). Berlin-Heidelberg-New York: Springer 1976Google Scholar
  13. Land, M.F.: Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J. exp. Biol.51, 471–493 (1969)Google Scholar
  14. Laughlin, S.B.: Neural integration in the first optic neuropile of dragon flies. I. Signal amplification in dark adapted second order neurons. J. comp. Physiol.84, 335–355 (1973)Google Scholar
  15. Leggett, L.M.W.: Ph.D. Thesis, Canberra 1977Google Scholar
  16. Patterson, J.: The eye muscle ofCalliphora vomitoria L. I. Spontaneous activity and the effects of light and dark adaptation. J. exp. Biol.58, 565–583 (1973)Google Scholar
  17. Pick, B.: Visual flicker induces orientation behaviour in the flyMusca. Z. Naturforsch.29c, 310–312 (1974)Google Scholar
  18. Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quart. Rev. Biophys.9, 311–375 (1976)Google Scholar
  19. Sandeman, D.C.: The nervous control of the eye movements of the shore crab,Carcinus meanas. Ph.d. Thesis, St. Andrews 1963Google Scholar
  20. Sandeman, D.C.: A sensitive position measuring device for biological systems. Comp. Biochem. Physiol.24, 635–638 (1968)Google Scholar
  21. Sandeman, D.C.: Compensatory eye movements in crabs. In: Identified neurons and arthropod behavior (ed. G. Hoyle). New York: Plenum Press 1978Google Scholar
  22. Sandeman, D.C.: Regionalization in the eye of the crabLeptograpsus variegatus: eye movements evoked by a target moving in different parts of the visual field. J. comp. Physiol. (1978)Google Scholar
  23. Sandeman, D.C., Erber, J., Kien, J.: Optokinetic eye movements in the crab I. Eye torque. J. comp. Physiol.101, 243–258 (1975)Google Scholar
  24. Snyder, A.W., Laughlin, S.B., Stavenga, D.G.: Information capacity of eyes. Vision Res.17, 1163–1175 (1977)Google Scholar
  25. Stowe, S., Ribi, W., Sandeman, D.C.: The anatomy of the first optic ganglion in the crabLeptograpsus variegatus. Cell Tiss. Res.178, 517–532 (1977)Google Scholar
  26. Wallace, G.K.: Visual scanning in the desert locust (Schistocerca gregaria Forsk.). J. exp. Biol.36, 512–525 (1959)Google Scholar
  27. Wiersma, C.A.G., Fiore, L.: Factors regulating the discharge frequency in optomotor fibres ofCarcinus maenas. J. exp. Biol.54, 497–505 (1971)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • D. C. Sandeman
    • 1
  1. 1.Department of Neurobiology, Research School of Biological SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations