Journal of comparative physiology

, Volume 123, Issue 4, pp 307–314 | Cite as

Phototaxis in the walking male and female fly (Calliphora erythrocephala Meig.)

I. The spontaneous phototactic reaction
  • Hedi W. Meyer


Investigations into the phototactic behavior of the walking blowfly (C.erythrocephala Meig.) led to the following results:
  1. 1.

    The phototactic behavior of female flies under the controlled test conditions is three-phase: (a) a short phase in the first hours after the final moult, in which no one of the two base orientation directions (towards the light or away from it) is preferred, (b) a strongly photopositive phase on the second day, (c) an intensively photonegative phase during the course of the third day of life. This is preserved with a constant strength until at least the tenth day (Figs. 3a, 4a).

  2. 2.

    The phototactic behavior of the male flies is multiphase: the tactic direction changed rhythmically during the total test duration (12 days) with a cycle of about 3 days. The first photopositive phase on the second day after the final moult coincides exactly with that of the females (Figs. 3 b, 4b).

  3. 3.

    At constant test intensity (It = 300 Lux) the strength of the positive and the negative phototaxis varies, in both sexes, inversely to the illumination intensity (0 Lux≦Ic≦400 Lux) to which the flies had been exposed in their rearing cages for several hours before beginning the test (Figs.4a, b; 5).

  4. 4.

    With constant rearing illumination in the cage (Ic = 40 Lux), deviations from the light direction of the courses walked depend on the test intensity in the following complex manner: with stepwise increase in the test intensity from 10−3 Lux to about 101 Lux the standard deviation in the angles walked decreases; from approximately 102 Lux on, it increases. The variance in the walking angles is larger in the case of young flies (2 days) than with older ones (6 or 12 days; Fig. 6).

  5. 5.

    Long-duration measurements at two-hourly test intervals with constant between-test illumination (40 Lux) show no indication of a correlation, under these test conditions, between the strength of phototactic reaction and the daily light-dark cycle (Fig. 7).



Test Intensity Negative Phototaxis Final Moult Phototactic Behavior Walk Male 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armbrust, E.J., Gyrisco, G.G.: The influence of some physical and biological factors on the phototactic response of the alfalfa weevil,Hypera postica. Ann. ent. Soc. Amer.61, 1561–1566 (1968)Google Scholar
  2. Barker, R.J., Cohen, C.F.: Factors influencing phototaxis of houseflies. J. Insect Physiol.17, 133–142 (1971)Google Scholar
  3. Batschelet, E.: Statistical methods for an analysis of problems in animal orientation and certain biological rhythms. Amer. I. Biol. Sc. (1965)Google Scholar
  4. Benzer, S.: Behavioral mutants ofDrosophila isolated by countercurrent distribution. Proc. nat. Acad. Sci. (Wash.)58, 1112–1119 (1967)Google Scholar
  5. Berthold jr., R., Benton, A.W.: Honey bee photoresponse as influenced by age. II. Drones and queens. Ann. ent. Soc. Amer.63, 1113–1116 (1970)Google Scholar
  6. Brandt, H.: Lichtorientierung der MehlmotteEphestia. Z. vergl. Physiol.20, 646–673 (1934)Google Scholar
  7. Carpenter, F.W.: The reaction of the pomace fly (Drosophila amph. Loew) to light and gravity and mechanical stimulation. Amer. Naturalist39, 157–171 (1905)Google Scholar
  8. Cassier, P.: Rôle des ocelles frontaux chezLocusta migratoria migratorioides. Insectes Sociaux9, 213–230 (1962)Google Scholar
  9. Cole, W.H.: Note on relation between photic stimulus and the rate of locomotion inDrosophila. Science N.S.55, 678–679 (1922)Google Scholar
  10. Cornwell, P.B.: The functions of the ocelli ofCalliphora (Diptera) andLocusta (Orthoptera). J. exp. Biol.32, 217–237 (1955)Google Scholar
  11. Couturier, A., Robert, P.: Recherches sur les migrations du hanneton commun,Melolontha melolontha L. Ann. Epiphyties3, 257–329 (1958)Google Scholar
  12. Dürrwächter, G.: Untersuchungen über Phototaxis und Geotaxis einiger Drosophila-Mutanten nach Aufzucht in verschiedenen Lichtbedingungen. Z. Tierpsychol.14, 1–28 (1957)Google Scholar
  13. Funktionelle Differenzierung und Wechselwirkungen der Rezeptorsysteme im Komplexauge vonDrosophila melanogaster. Dissertation, Freiburg (1976)Google Scholar
  14. Francia, F.C., Graham, K.: Aspects of orientation behavior in the ambrosia beetle,Trypodendron lineatum (Olivier). Canad. J. Zool.45, 985–1002 (1967)Google Scholar
  15. Gavel, L.v.: Die kritische Streifenbreite als Maß der Sehschärfe beiDrosophila melanogaster. Z. vergl. Physiol.27, 80–135 (1939)Google Scholar
  16. Green, G.W.: The control of spontaneous locomotor activity inPhormia regina Meig. I. Locomotor activity pattern of intact flies. J. Insect Physiol.10, 711–726 (1964)Google Scholar
  17. Hadler, N.M.: Heritability and phototaxis inDrosophila melanogaster. Genetics50, 1269–1277 (1964)Google Scholar
  18. Heisenberg, M.: Comparative behavioral studies on two visual mutants ofDrosophila. J. comp. Physiol.80, 119–136 (1972)Google Scholar
  19. Heisenberg, M., Götz, K.G.: The use of mutants for the partial degeneratiom of vision inDrosophila melanogaster. J. comp. Physiol.98, 217–241 (1975)Google Scholar
  20. Herms, W.B.: The photic reaction of sarcophagic flies, especiallyLucilia caesar L. andCalliphora vomitoria L. J. exp. Zool.10, 167–226 (1911)Google Scholar
  21. Hierholzer, O.: Ein Beitrag zur Frage der Orientierung vonIps curvidens. Z. Tierpsychol.7, 588–620 (1950)Google Scholar
  22. Jander, R.: Grundleistungen der Licht- und Schwereorientierung von Insekten. Z. vergl. Physiol.47, 381–430 (1963)Google Scholar
  23. Jander, R., Barry, C.K.: Die phototaktische Gegenkoppelung von Stirnocellen und Facettenaugen in der Phototropotaxis der Heuschrecken und der Grillen (Saltatoptera:Locusta migratoria undGryllus bimaculatus). Z. vergl. Physiol.57, 432–458 (1968)Google Scholar
  24. Koch, R.: Tagesperiodik der Aktivität und der Orientierung nach Wald und Feld vonDrosophila subobscura undD. obscura. Z. vergl. Physiol.54, 353–394 (1967)Google Scholar
  25. Lewis, T., Taylor, L.R.: Diurnal periodicity of flight by insects. Trans, roy. ent. Soc. Lond.116, 393–476 (1964)Google Scholar
  26. Mast, S.: Photic orientation in insects with special reference to the drone-flyEristalis tenax and the robber-flyErax rufibarbus. J. exp. Zool.38, 109–205 (1923)Google Scholar
  27. McEwen, R.S.: The reaction to light and to gravity inDrosophila and its mutants. J. exp. Zool.25, 49–106 (1918)Google Scholar
  28. Payne, F.:Drosophila amph. Loew bred in the dark for 69 generations. Biol. Bull.21, 297 (1911)Google Scholar
  29. Perttunen, V.: Effect of temperature on light reaction ofBlastophagus piniperda L. (Col., Scolytidae). Ann. Entomol. Fenn.25, 65–71 (1959)Google Scholar
  30. Perttunen, V.: Effect of desiccation on the light reaction of some terrestrial arthropods. Ergebn. Biol.26, 90–97 (1963)Google Scholar
  31. Perttunen, V., Paloheimo, L.: Effect of temperature and light intensity on the light reaction of the larvae and adults ofTenebrio molitor L. (Col., Tenebrionidae). Ann. Entomol. Fenn.29, 171–184 (1963)Google Scholar
  32. Pulliainen, E., Nederström, A.: Studies on the orientation ofChrysomela varians Schall, (Col., Chrysomelidae). II. Light reactions. Ann. Entomol. Fenn.32, 58–68 (1966)Google Scholar
  33. Schümperli, R.F.: Evidence for colour vision inDrosophila melanogaster through spontaneous choice behaviour. J. comp. Physiol.86, 77–94 (1973)Google Scholar
  34. Shepherd, R.F.: Factors influencing the orientation and rates of activity ofDendroctonus ponderosae (Coleoptera: Scolytidae). Canad. Ent.98, 507–518 (1966)Google Scholar
  35. Tsutsumi, C.: Characteristics of the daily behavior and activity patterns of the adult housefly with special reference to time keeping device. Jap. J. med. Sci. Biol.26, 119–141 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Hedi W. Meyer
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFederal Republic of Germany

Personalised recommendations