Skip to main content
Log in

Review of the development and breakdown of protective oxide scales on alloys exposed to coal-derived atmospheres

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Metal components in coal utilization and conversion systems are subject to severe corrosion by sulfur and other impurities in coal-derived environments. Most of the alloys and metallic coatings designed to withstand high-temperature aggressive environments rely on the formation of protective Cr 2O3 and Al 2O3 scales. However, in mixed-gas environments containing sulfur, either the protective oxide scales do not form or they rapidly break down. In order to understand corrosion behavior in mixed-gas environments, previous work on corrosion of high-temperature materials in coal-related applications is summarized. Current ideas for the development of protective oxide scales on alloys in mixed-gas environments by preoxidation and by the addition of reactive elements to the alloys are reviewed. Finally, future studies are recommended as being important to the development of alloys with better corrosion resistance in mixed-gas environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Judkins and R. A. Bradley,Surface Gasification Materials Program Plan for Fiscal Years 1985 through 1989, ORNL/TM-9577, 1985.

  2. A. H. Nazemi, M. M. Madsen, and G. A. Malone,Analysis of Metal Wastage in Coal-Fired Fluidized-Bed Combustors, DOE/MC/21351-1930, U.S. Department of Energy, 1985.

  3. F. H. Stott and M. F. Chong, inCorrosion Resistant Materials for Coal Conversion Systems, D. B. Meadowcroft and M. I. Manning, eds. (Applied Science Publishers, Essex, England, 1983), p. 491.

    Google Scholar 

  4. P. Singh and N. Birks,Werkstoffe Korros. 31, 682 (1980).

    Google Scholar 

  5. K. Natesan,J. Corros. 38, 361 (1982).

    Google Scholar 

  6. A. A. Boiarski, V. Nagarajan, I. G. Wright, and H. E. Carlton,J. Inst. Energy LVII(430), 252 (1984).

    Google Scholar 

  7. E. B. Ljungstrom, in Proceedings of the 8th International Conference on Fluidized Bed Combustion, Houston, DOE/METC-85/6021, Vol. II, U.S. Department of Energy, July 1985, p. 853.

  8. M. A. Rocazella and I. G. Wright, inHigh Temperature Material Problems in Coal Combustion and Utilization, I. G. Wright, ed. (Electrochemical Society, Pennington, N.J.), 1983).

    Google Scholar 

  9. J. Stringer and A. J. Minchener,J. Mater. Energy Syst. 7, 333 (1986).

    Google Scholar 

  10. A. J. Minchener, D. M. Lloyd, and P. T. Sutcliffe,Materials Evaluation for Fluidized Bed Combustion Systems, CS-3511, final report to EPRI on Research Project RP979-11, The Electric Power Research Institute, Palo Alto, Calif., August 1984.

    Google Scholar 

  11. J. B. Gilmour, H. Hindam, A. W. Liu, D. C. Briggs, and R. F. Knight, CORROSION/86, paper No. 91 (National Association of Corrosion Engineers, Houston, 1986).

    Google Scholar 

  12. V. K. Sethi, P. Ganesan, D. Robinson-Wilson, E. Puentes, and S. K. Sherman, CORROSION/86, paper No. 92 (National Association of Corrosion Engineers, Houston, 1986).

    Google Scholar 

  13. J. Stringer, CORROSION/86, paper No. 90 (National Association of Corrosion Engineers, Houston, 1986).

    Google Scholar 

  14. K. Natesan, CORROSION/86, paper No. 93 (National Association of Corrosion Engineers, Houston, 1986).

    Google Scholar 

  15. T. C. Tiearney, Jr. and K. Natesan,J. Mater. Energy Syst. 1, 13 (1980).

    Google Scholar 

  16. J. Stringer, inHigh Temperature Materials Corrosion in Coal Gasification Atmospheres, J. F. Norton, ed. (Elsevier Applied Science Publishers, London, 1984), p. 83.

    Google Scholar 

  17. K. Natesan,J. Corros. 41, 646 (1985).

    Google Scholar 

  18. S. R. J. Saunders and S. Schlierer,J. Mater. Energy Syst. 7, 353 (1986).

    Google Scholar 

  19. G. R. Smolik and J. E. Flinn,J. Mater. Energy Syst. 7, 302 (1986).

    Google Scholar 

  20. S. Danyluk and D. Diercks, inThe Properties and Performance of Materials in the Coal Gasification Environment, V. L. Hill and H. L. Black, eds. (American Society for Metals, Metals Park, Ohio, 1981), p. 155.

    Google Scholar 

  21. J. Stringer, inProceedings of Corrosion in Fossil Fuel Systems, Vol. 83–5, I. G. Wright, ed. (Electrochemical Society, Pennington, N.J., 1983), p. 1.

    Google Scholar 

  22. S. Mrowec and K. Przybylski,J. Oxid. Met. 23, 107 (1985).

    Google Scholar 

  23. N. Birks, inProceedings of Symposium on Properties of High Temperature Alloys, Vol. 77-1, Z. A. Foroulis and F. S. Pettit, eds. (Electrochemical Society, Pennington, N.J., 1977), p. 215.

    Google Scholar 

  24. C. S. Giggins and F. S. Pettit,J. Oxid. Met. 14, 363 (1980).

    Google Scholar 

  25. T. C. Tiearney, Jr. and K. Natesan,Oxid. Met. 17, 1 (1982).

    Google Scholar 

  26. R. A. Perkins and S. J. Vonk,Materials Problems in Fluidized-Bed Combustion Systems, EPRI-FP-1280 (Electric Power Research Institute, Palo Alto, Calif., 1979).

    Google Scholar 

  27. D. B. Rao, K. T. Jacob, and H. G. Nelson,Metall. Trans. A 14A, 295 (1983).

    Google Scholar 

  28. K. Natesan and M. B. Delaplane, inProceedings of Symposium on Corrosion-Erosion Behavior of Materials, K. Natesan, ed. (American Institute of Mining, Metallurigical, and Petroleum Engineers, New York, 1978), p. 1.

    Google Scholar 

  29. K. Natesan, inHigh Temperature Corrosion, NACE-6, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, 1983), p. 336.

    Google Scholar 

  30. T. T. Huang, B. Peterson, D. A. Shores, and E. Pfender,Corros. Sci. 24, 167 (1984).

    Google Scholar 

  31. T. T. Huang, R. Richter, Y. L. Chang. and E. Pfender,Metall. Trans. A 16A, 2051 (1985).

    Google Scholar 

  32. P. Singh and N. Birks,J. Oxid. Met. 13, 457 (1979).

    Google Scholar 

  33. P. Singh and N. Birks,J. Oxid. Met. 19, 37 (1983).

    Google Scholar 

  34. F. H. Stott, F. M. F. Chong, and C. A. Stirling,The Effectiveness of Preformed Oxides for Protection of Alloys in Sulphidizing Gases at High Temperatures, 9th edn., International Congress on Metallic Corrosion, 1984, p. 1.

  35. R. A. Perkins, W. C. Coons, and S. J. Vonk,Materials Problems in Fluidized-Bed Combustion and Coal Gasification Systems, EPRI-CS-2452 (Electric Power Research Institute, Palo Alto, Calif., 1982).

    Google Scholar 

  36. Y. K. Kim, K. Pryzbylski, and G. J. Yurek, inProceedings of Symposium on Fundamental Aspects of High Temperature Corrosion, Vol. II, D. A. Shores and G. J. Yurek, eds. (Electrochemical Society, Pennington, N.J., 1986), p. 259.

    Google Scholar 

  37. G. Romeo and D. W. McKee,J. Electrochem. Soc. 122, 188 (1975).

    Google Scholar 

  38. M. C. Pope and N. Birks,J. Oxid. Met. 12, 173 (1978).

    Google Scholar 

  39. G. R. Wallwork and A. Z. Hed,J. Oxid. Met. 3, 229 (1971).

    Google Scholar 

  40. C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1971).

    Google Scholar 

  41. H. H. Davis, H. C. Graham, and I. A. Kvernes,J. Oxid. Met. 3, 431 (1971).

    Google Scholar 

  42. J. Stringer, B. A. Wilcox, and R. I. Jaffee,J. Oxid. Met. 5, 11 (1972).

    Google Scholar 

  43. K. S. Grabowski and L. E. Rehn, inCorrosion of Metals Processed by Directed Energy Beams, C. R. Clayton and C. M. Preece, eds. (American Institute of Mining, Metallurigical, and Petroleum Engineers, Warrendale, Pa., 1982), p. 23.

    Google Scholar 

  44. M. J. Bennett, inHigh Temperature Corrosion, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, 1983), p. 145.

    Google Scholar 

  45. M. J. Bennett, G. Dearnaley, M. R. Houlton, R. W. M. Hawes, P. D. Goode, and M. A. Wilkins,Corros. Sci. 20, 73 (1980).

    Google Scholar 

  46. J. C. Pivin, C. Roques-Carmes, J. Chaumont, and H. Bernas,Corros. Sci. 20, 947 (1980).

    Google Scholar 

  47. J. E. Antill, M. J. Bennett, R. F. A. Carney, G. Dearnaley, F. H. Fern, P. D. Goode, B. L. Myatt, J. F. Turner, and J. B. Warburton,Corros. Sci. 16, 729 (1976).

    Google Scholar 

  48. M. Landkof, A. V. Levy, D. H. Boone, R. Gray, and E. Yaniv,Corrosion 41, 344 (1985).

    Google Scholar 

  49. F. A. Golightly, G. C. Wood, and F. H. Stott,J. Oxid. Met. 14, 217 (1980).

    Google Scholar 

  50. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,J. Oxid. Met. 22, 83 (1984).

    Google Scholar 

  51. J. Stringer and I. G. Wright,J. Oxid. Met. 5, 59 (1972).

    Google Scholar 

  52. P. D. Goodell, J. V. Cathcart, and R. H. Kane,J. Oxid. Met. 25, 29 (1986).

    Google Scholar 

  53. D. J. Baxter and K. Natesan,J. Oxid. Met. 24, 331 (1985).

    Google Scholar 

  54. D. J. Baxter and K. Natesan,J. Corros. Sci. 26, 153 (1986).

    Google Scholar 

  55. J. W. Cahn,Acta Metall. 10, 789 (1962).

    Google Scholar 

  56. K. Przybylski, in Proceedings of the 10th International Symposium on Reactivity of Solids, Dijon, France, Aug. 27–Sept. 1, 1984.

  57. G. C. Wood and J. Boustead,Corros. Sci. 8, 719 (1968).

    Google Scholar 

  58. J. M. Francis and W. H. Whitlow,Corros. Sci. 5, 701 (1965).

    Google Scholar 

  59. J. M. Francis and J. A. Jutson,Corros. Sci. 8, 445 (1968).

    Google Scholar 

  60. J. K. Tien and F. S. Pettit,Metall. Trans. 3, 1587 (1972).

    Google Scholar 

  61. C. S. Wukusick and J. F. Collins,Mater. Res. Stand. 4, 637 (1967).

    Google Scholar 

  62. F. A. Golightly, F. H. Stott, and G. C. Wood,J. Oxid. Met. 10, 163 (1976).

    Google Scholar 

  63. F. A. Golightly, F. H. Stott, and G. C. Wood,J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  64. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,J. Electrochem. Soc. 131, 923 (1984).

    Google Scholar 

  65. K. Przybylski and G. J. Yurek, inExtended Abstracts of 169th Meeting of the Electrochemical Society, Vol. 86-1 (Electrochemical Society, Princeton, N.J., 1986), p. 541.

    Google Scholar 

  66. A. A. Moosa, S. J. Rothman, and L. J. Nowicki,J. Oxid. Met. 24, 115 (1985).

    Google Scholar 

  67. A. A. Moosa and S. J. Rothman.Oxid. Met. 24, 133 (1985).

    Google Scholar 

  68. H. S. Hsu, inOxidation of Metals and Associated Mass Transport, M. A. Dayanda, S. J. Rothman, and W. E. King, eds. Proceedings of the 1986 TMS Meeting Symposium, Orlando, Florida, Oct. 6–7, 1986.

  69. A. Atkinson, R. I. Taylor, and A. E. Hughes,Philos. Mag. A45, 823 (1982).

    Google Scholar 

  70. G. C. Wood,Werkst. Korros. 22, 491 (1971).

    Google Scholar 

  71. M. M. El-Aiat and F. A. Kroger,J. Am. Ceram. Soc. 65, 280 (1982).

    Google Scholar 

  72. D. P. Whittle, M. E. El-Dahshan, and J. Stringer,Corros. Sci. 17, 879 (1977).

    Google Scholar 

  73. J. Stringer, A. Z. Hed, G. R. Wallwork, and B. A. Wilcox,Corros. Sci. 12, 625 (1972).

    Google Scholar 

  74. H. M. Flower and B. A. Wilcox,Corros. Sci. 17, 253 (1977).

    Google Scholar 

  75. I. G. Wright and B. A. Wilcox,Metall. Trans. 5, 957 (1974).

    Google Scholar 

  76. A. U. Seybolt,Corros. Sci. 6, 263 (1966).

    Google Scholar 

  77. M. S. Seltzer, B. A. Wilcox, and J. Stringer,Metall. Trans. 3, 2391 (1972).

    Google Scholar 

  78. I. M. Allam, D. P. Whittle, and J. Stringer,Metall. Trans. 13, 381 (1979).

    Google Scholar 

  79. H. T. Michels,Metall. Trans. 7A, 379 (1976).

    Google Scholar 

  80. O. T. Goncel, D. P. Whittle, and J. Stringer,Corros. Sci. 19, 305 (1979).

    Google Scholar 

  81. I. G. Wright and J. Stringer,Metallography 6, 65 (1973).

    Google Scholar 

  82. D. P. Whittle and J. Stringer,Philos. Trans. R. Soc. Land. Ser. A 295, 309 (1980).

    Google Scholar 

  83. G. C. Wood and F. H. Stott, inHigh Temperature Corrosion, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, 1983), p. 227.

    Google Scholar 

  84. H. Hindam and D. P. Whittle,J. Oxid. Met. 18, 245 (1982).

    Google Scholar 

  85. H. Hindam and D. P. Whittle,J. Electrochem. Soc. 129, 1147 (1982).

    Google Scholar 

  86. H. Hindam and D. P. Whittle,Microstruct. Sci. 12, 263 (1985).

    Google Scholar 

  87. A. W. Funkenbusch and J. G. Smeggil,A Study of Adherent Oxide Formation, Annual Tech. Rep. R83-916154-1 (Office of Naval Research Contract N00014-82-C-0618, United Technologies Co., East Hartford, Conn., 1983).

    Google Scholar 

  88. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  89. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  90. J. Stringer,Met. Rev. 11, 113 (1966).

    Google Scholar 

  91. J. D. Kuenzly and D. L. Douglass,J. Oxid. Met. 8, 139 (1974).

    Google Scholar 

  92. F. N. Rhines and J. S. Wolf,Metall Trans.,1, 1701, 1970.

    Google Scholar 

  93. R. M. Cannon, W. H. Rhodes, and A. H. Heuer,J. Am. Ceram. Soc. 63, 46 (1980).

    Google Scholar 

  94. J. E. Antill and K. A. Peakall,J. Iron Steel Inst. 205, 1136 (1967).

    Google Scholar 

  95. J. E. Doherty, A. F. Giamei, and B. H. Kear,Can. Met. Quart. 13, 229 (1974).

    Google Scholar 

  96. R. A. Mulford,Metall. Trans. A 14A, 865 (1983).

    Google Scholar 

  97. K. L. Luthra and C. L. Briant,Extended Abst. Electrochem. Soc. 84-1, 26 (1984).

    Google Scholar 

  98. A. W. Funkenbusch, H. G. Smeggil, and N. S. Bornstein,Metall. Trans, A. 16A, 1164 (1985).

    Google Scholar 

  99. K. L. Luthra and C. L. Briant, inProceedings of Fundamental Aspects of High Temperature Corrosion, Vol. II, D. A. Shores and G. J. Yurek, eds. (Electrochemical Society, Princeton, N.J., 1986), p. 187.

    Google Scholar 

  100. C. L. Briant and K. L. Luthra, inProceedings of Fundamental Aspects of High Temperature Corrosion, Vol. II, D. A. Shores and G. J. Yurek, eds. (Electrochemical Society, Princeton, N.J., 1986), p. 200.

    Google Scholar 

  101. T. T. Huang, Y. C. Lin, D. A. Shores, and E. Pfender,J. Electrochem. Soc. 131, 2191 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, H.S. Review of the development and breakdown of protective oxide scales on alloys exposed to coal-derived atmospheres. Oxid Met 28, 213–235 (1987). https://doi.org/10.1007/BF00656708

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656708

Key words

Navigation