Advertisement

Oxidation of Metals

, Volume 28, Issue 3–4, pp 183–194 | Cite as

Inherent oxidation protection of Fe-5Cr-15Ni-2Si-4.5Mo

  • J. C. Rawers
Article

Abstract

The oxidation mechanism of Fe-5Cr-15Ni-2Si-4.5Mo alloy was investigated in order to determine the role of Si and Mo in providing oxidation resistance. It was determined that the oxidation protection in the temperature range 750–950°C resulted from formation of a continuous oxide sublayer of SiO2(or possibly Fe2SiO4).Molybdenum formed an intermetallic Fe2Mo1−xSixthat eventually diffused out into the grain boundaries and formed a protective barrier to the oxidation process. The mechanism behind the improved oxidation is the formation of a SiO2layer at the metal-oxide interface that retards the outward diffusion of Fe. It was also established that the oxidation mechanism was controlled by an activation energy equal to that of Fe3+ions diffusing through SiO2.

Key words

Oxidation silicon molybdenum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Taylor, J. M. Calvert, D. C. Lees, and D. B. Meadowcraft,Oxid. Met. 14, 499 (1980).Google Scholar
  2. 2.
    P. T. Mosley, G. Tappin, and J. C. Riviere,High Temp. High Press. 14, 559 (1982).Google Scholar
  3. 3.
    T. Smith,Sheet Met. Ind. 59, 42 (1982).Google Scholar
  4. 4.
    H. Fujikawa, J. Murayama, N. Fujino, T. Moroishi, and Y. Shoji,J. Iron Steel Ind. Jn. 76, 159 (1981).Google Scholar
  5. 5.
    K. Saito, S. Akiyama, M. Kisaichi, Y. Takahashi, and K. Ogawa,Nippon Stainless Tech. Rep. 16, 1 (1981).Google Scholar
  6. 6.
    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Weber,Oxid. Met.,19 1 (1983).Google Scholar
  7. 7.
    R. G. Miner and V. Nagarajan,Oxid. Met. 16, 295 (1981).Google Scholar
  8. 8.
    G. C. Wood, A. Richardson, M. G. Hobby, and J. Boustead,Corros. Sci. 9, 659 (1969).Google Scholar
  9. 9.
    A. Atkinson,Corros. Sci. 22, 87 (1982).Google Scholar
  10. 10.
    I. Svedung and N. G. Vannerburg,Corros. Sci. 14, 391 (1974).Google Scholar
  11. 11.
    P. T. Mosley, G. Tappin, J. A. Crosley, and J. C. Riviere,Corros. Sci. 23, 901 (1983).Google Scholar
  12. 12.
    A. Atkinson and J. W. Gardner,Corros. Sci. 21, 49 (1981).Google Scholar
  13. 13.
    A. J. Hughes,Corros. Sci. 22, 103 (1982).Google Scholar
  14. 14.
    P. T. Mosley, G. Tappin, and J. C. Riviere,Corros. Sci. 22, 69 (1982).Google Scholar
  15. 15.
    A. Kumar and D. L. Douglass,Oxid. Met. 10, 1 (1976).Google Scholar
  16. 16.
    V. G. Rivlin and G. V. Raynor,Int. Met. Rev. 30, 68 (1985).Google Scholar
  17. 17.
    W. H. Vernon, J. F. Wormwell, and T. J. Nurse,J. Chem. Soc., 621 (1939).Google Scholar
  18. 18.
    J. C. Rawers,J. Mater. Sci. 5, 513 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • J. C. Rawers
    • 1
    • 2
  1. 1.U.S. Department of the InteriorAlbany Research Center, Bureau of MinesAlbany
  2. 2.Oregon State UniversityCorvallis

Personalised recommendations