Oxidation of Metals

, Volume 22, Issue 5–6, pp 227–245 | Cite as

Effects of aluminum on the oxidation of 25Cr-35Ni cast steels

  • N. Belen
  • P. Tomaszewicz
  • D. J. Young


The oxidation kinetics and morphological development during reaction of two cast austenitic steels at 1000°C in pure dry oxygen at 20 kPa are reported. Both steels contained approximately 25 wt.% Cr and 35 wt.% Ni and, in addition, one steel contained 3.3 wt. %. Both steels oxidized to form external scales consisting mainly of Cr2O3 with a thin outer layer of manganese rich spinel. Scale growth kinetics were parabolic, and somewhat faster rates were observed for the aluminum bearing steel. In both steels, deep internal oxidation occurred at the site of primary (interdendritic) carbides. The kinetics of this process were parabolic, and rate control was attributed to oxygen diffusion along the interface between internal oxide and matrix metal. In the aluminum-free steel, interdendritic carbides were converted to chromium rich oxide, but when aluminum was present, a sheath of aluminum rich oxide formed around the carbides. In this latter case, the rate of interdendritic penetration was somewhat slower. The aluminum bearing steel also formed large numbers of rod-shaped Al2O3 precipitates within the austenitic dendrites. Deepening of the Al2O3 precipitate zone also proceeded according to parabolic kinetics at a rate consistent with rate control by diffusion of oxygen along the oxide-alloy interfaces.

Key words

internal oxidation carbide oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Morris, inSource Book on Materials for Elevated Temperature Applications, E. F. Bradley, ed. (ASM, Metals Park, Ohio, 1979), pp. 198–215.Google Scholar
  2. 2.
    A. J. Sedriks,Corrosion of Stainless Steels (Wiley-Interscience, New York, 1979), Chap. 10.Google Scholar
  3. 3.
    D. Caplan and M. Cohen,Corr. 15, 141t (1959).Google Scholar
  4. 4.
    H. J. Yearian, H. E. Boren, and R. E. Warr,Corr. 12, 561t (1956).Google Scholar
  5. 5.
    M. G. Hobby and G. C. Wood,Oxid. Met. 1, 23 (1969).Google Scholar
  6. 6.
    J. E. Croll and G. R. Wallwork,Oxid. Met. 1, 55 (1969).Google Scholar
  7. 7.
    J. E. Croll and G. R. Wallwork,Oxid. Met. 4, 121 (1972).Google Scholar
  8. 8.
    A. Kumar and D. L. Douglass,Oxid. Met. 10, 1 (1976).Google Scholar
  9. 9.
    A. DeS. Brasunas, J. T. Gow, and O. E. Harder,Proc. ASTM 46, 870 (1966).Google Scholar
  10. 10.
    K. Ledgeff, A. Rahmel, and M. Schorr,Werkstoffe u. Korros. 30, 767 (1979).Google Scholar
  11. 11.
    D. J. Young,High Temp. Technol. 1, 101 (1982).Google Scholar
  12. 12.
    D. J. Baxter, R. T. Derricott, and R. C. Hurst,Werkstoffe u. Korros. 34, 446 (1983).Google Scholar
  13. 13.
    H. J. Goldschmidt,Interstitial Alloys (Plenum Press, New York, 1967), pp. 94–95.Google Scholar
  14. 14.
    S. Goto, K. Nomaki, and S. Koda,J.J.I.M. 31, 600 (1967).Google Scholar
  15. 15.
    G. C. Wood, F. H. Stott, D. P. Whittle, Y. Shida, and B. D. Bastow,Corr. Sci. 23, 9 (1983).Google Scholar
  16. 16.
    D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott, and B. D. Bastow,Phil. Mag. 46A, 931 (1982).Google Scholar
  17. 17.
    C. E. Lowell,Oxid. Met. 7, 95 (1973).Google Scholar
  18. 18.
    D. L. Douglass and J. S. Armijo,Oxid. Met. 2, 297 (1970).Google Scholar
  19. 19.
    C. Wagner,Corr. Sci. 8, 889 (1968).Google Scholar
  20. 20.
    C. J. Smithells,Metals Reference Book (Butterworths, London, 1976).Google Scholar
  21. 21.
    C. Wagner,J. Electrochem. Soc. 103, 571 (1956).Google Scholar
  22. 22.
    D. P. Whittle, D. J. Young, and W. W. Smeltzer,J. Electrochem. Soc. 123, 1073 (1976).Google Scholar
  23. 23.
    Y. Shida, F. H. Stott, B. D. Bastow, D. P. Whittle, and G. C. Wood,Oxid. Met. 18, 93 (1982).Google Scholar
  24. 24.
    C. Wagner,Z. Elektrochem. 63, 772 (1959).Google Scholar
  25. 25.
    R. A. Rapp,Corr. 21, 382 (1965).Google Scholar
  26. 26.
    F. Maak,Z. Metallkunde 52, 545 (1961).Google Scholar
  27. 27.
    D. J. Young, J. S. Kirkaldy, and W. W. Smeltzer,J. Electrochem. Soc. 123, 1758 (1976).Google Scholar
  28. 28.
    H. Hindam and W. W. Smeltzer,J. Electrochem. Soc. 127, 1622 (1980).Google Scholar
  29. 29.
    H. Hindam and D. P. Whittle,J. Mat. Sci. 18, 1389 (1983).Google Scholar
  30. 30.
    C. S. Giggins and F. S. Pettit,J. Electrochem. Soc. 118, 1782 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • N. Belen
    • 1
  • P. Tomaszewicz
    • 2
  • D. J. Young
    • 1
  1. 1.School of Chemical Engineering and Industrial ChemistryThe University of New South WalesKensingtonAustralia
  2. 2.Division of Applied PhysicsCSIROLindfieldAustralia

Personalised recommendations