Advertisement

Journal of Low Temperature Physics

, Volume 11, Issue 3–4, pp 333–347 | Cite as

Applied current density in the section of a type-II superconductor

  • P. Thorel
  • Y. Simon
  • A. Guetta
Article

Abstract

A thermodynamic treatment suggests that the applied current density is located in the surface sheet in order to create a null magnetic local field inside the bulk superconductor according to the London penetration law, until there is no dissipation in the sample. A direct investigation of this evidence is performed by measuring the field created by the current near the surface of square- or rectangular-section samples. This field is known by the measurement of the flux variation in small pickup coils while the current is turned on and off. The main experimental result shows that the critical current intensity does not flow in a uniform distribution inside the sample section and so denies a physical meaning to the notion of critical current density.

Keywords

Uniform Distribution Magnetic Material Physical Meaning Local Field Current Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. de Gennes,Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966).Google Scholar
  2. 2.
    Y. B. Kim, C. F. Hempstead, and A. R. Strnad,Phys. Rev. 129, 528 (1963).Google Scholar
  3. 3.
    P. Aigrain, private communication.Google Scholar
  4. 4.
    P. Thorel, Thèse, Université Paris VI (1972), p. 42.Google Scholar
  5. 5.
    P. Thorel and Y. Simon, Proceedings 12th International Conference on Low Temperature Physics (Kyoto, 1970), p. 477.Google Scholar
  6. 6.
    F. A. Staas, A. K. Niessen, and W. F. Druyvestejn,Philips Res. Reports 22, 445 (1967).Google Scholar
  7. 7.
    J. Sauzade,Revue Générale d'Electricité 70, 317 (1961).Google Scholar
  8. 8.
    D. Saint-James and P. G. de Gennes,Phys. Letters 7, 306 (1963).Google Scholar
  9. 9.
    P. S. Swartz and M. R. Hart,Phys. Rev. 137A, 818 (1965).Google Scholar
  10. 10.
    P. Martinolli and P. de Trey, Proc. 11th International Conf. on Low Temperature Physics (St Andrews, 1968), p. 823.Google Scholar
  11. 11.
    Y. Simon and P. Thorel,Phys. Letters 35A, 450 (1971); P. Thorel, R. Kahn, Y. Simon, and D. Cribier,J. Physique 34(5–6) (1973).Google Scholar
  12. 12.
    P. Nozieres and W. F. Vinen,Phil. Mag. 14, 667 (1966); J. Bardeen and M. J. Stephen,Phys. Rev. 104A, 1197 (1965).Google Scholar
  13. 13.
    J. P. Dosdat, 2ème Colloque d'Aussois, 1972, unpublished.Google Scholar
  14. 14.
    W. C. H. Joiner and G. E. Kuhl,Phys. Rev. 163, 362 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • P. Thorel
    • 1
  • Y. Simon
    • 1
  • A. Guetta
    • 1
  1. 1.Laboratoire de Physique des Solides de l'Ecole Normale SupérieureParisFrance

Personalised recommendations