Journal of Low Temperature Physics

, Volume 11, Issue 3–4, pp 301–319 | Cite as

Theory of dilute solutions of3He in superfluid4He. I. Perturbation theory in a nonorthogonal basis

  • Russell H. Kulas
  • William J. Mullin
Article

Abstract

A new procedure is presented which enables the development of perturbative expansions for the energies and transition amplitudes in systems described by nonorthogonal basis functions. The procedure is based upon defining a new metric matrix, that is, by redefining the quantum-mechanical scalar product. The results justify certain previous applications of the Schmidt orthogonalization method. It is shown that the same results can be obtained using Löwdin orthogonalization. While the procedure was developed for application with the correlated basis function (CBF) approach to dilute3He-4He solutions, it can be applied in any nonorthogonality situation.

Keywords

Basis Function Perturbation Theory Magnetic Material Scalar Product Transition Amplitude 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill Book Co., New York, 1961), Vol. II, pp. 1001–1038.Google Scholar
  2. 2.
    J. W. Clark and E. Feenberg,Phys. Rev. 113, 388 (1959).Google Scholar
  3. 3.
    P. O. Löwdin,J. Chem. Phys. 18, 365 (1950).Google Scholar
  4. 4.
    P. O. Löwdin, Preliminary Research Report No. 213, Quantum Chemistry Group, Uppsala University, Uppsala, Sweden, 1968.Google Scholar
  5. 5.
    R. P. Feynman,Phys. Rev. 94, 262 (1954).Google Scholar
  6. 6.
    H. W. Jackson and E. Feenberg,Rev. Mod. Phys. 34, 686 (1962).Google Scholar
  7. 7.
    E. Feenberg,Theory of Quantum Fluids (Academic Press, New York, 1969), Chaps. 8 and 9, and references therein.Google Scholar
  8. 8.
    C. W. Woo, H. T. Tan, and W. E. Massey,Phys. Rev. 185, 287 (1969).Google Scholar
  9. 9.
    W. L. McMillan,Phys. Rev. 182, 299 (1969).Google Scholar
  10. 10.
    Freeman J. Dyson,Phys. Rev. 102, 1217, 1230 (1956), and references therein.Google Scholar
  11. 11.
    T. B. Davison and E. Feenberg,Phys. Rev. 178, 306 (1969).Google Scholar
  12. 12.
    J. C. Slater and G. F. Koster,Phys. Rev. 94, 1498 (1954); see also Ref. 4.Google Scholar
  13. 13.
    See, for example, L. I. Schiff,Quantum Mechanics, 3rd ed. (McGraw-Hill Book Co., New York, 1968), pp. 245–247.Google Scholar
  14. 14.
    E. Merzbacher,Quantum Mechanics (John Wiley and Sons, New York, 1961), pp. 483ff, 497.Google Scholar
  15. 15.
    M. Goldberger and K. Watson,Collision Theory (John Wiley and Sons, New York, 1964), Chap. 3.Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • Russell H. Kulas
    • 1
  • William J. Mullin
    • 2
  1. 1.Department of Chemistry and Physical ScienceQuinnipiac CollegeHamden
  2. 2.Department of Physics and AstronomyUniversity of MassachusettsAmherst

Personalised recommendations