Journal of Low Temperature Physics

, Volume 13, Issue 5–6, pp 573–589 | Cite as

Thermoelectric power of pure gallium. II. Size and impurity effects

  • S. N. Mahajan
  • J. G. Daunt
  • R. I. Boughton
  • M. Yaqub


The thermoelectric power as a function of specimen size for gallium single crystals and crystals doped with small percentages of indium has been measured along the three different directions of the orthorhombic lattice between 4.2 and 1.4 K by means of a superconducting potentiometer. From the observations of the temperature dependence of the size effects, evaluations were made of the derivative with respect to energy of the Fermi surface area and the mean free path along the three crystal axes. These data are tabulated. Along theA andB axes (∇ lnS F /∇E) E is about −0.65 eV−1, the negative sign indicating conduction by a band of holes, whereas along theC axis this derivative is positive, indicating conduction by a band of electrons of smaller dimensions. Among other information derived from measurement of the indium-doped samples was that the intrinsic contribution to the diffusion thermopower of In along theC axis of gallium is+2.7×10−8T(V/K).


Indium Gallium Magnetic Material Free Path Negative Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Justi, M. Kohler and G. Lautz,Naturwiss. 38, 475 (1951).Google Scholar
  2. 2.
    E. Justi, M. Kohler and G. Lautz,Z. Naturforsch. 6a, 456 (1951).Google Scholar
  3. 3.
    E. Justi, M. Kohler and G. Lautz,Z. Naturforsch. 6a, 544 (1951).Google Scholar
  4. 4.
    R. P. Huebener,Phys. Rev. 136, A1740 (1964).Google Scholar
  5. 5.
    R. P. Huebener,Phys. Rev. 140, A1834 (1965).Google Scholar
  6. 6.
    S. Mahajanet al., J. Low Temp. Phys. 12, 347 (1973).Google Scholar
  7. 7.
    R. I. Boughton and J. E. Neighbor,J. Low Temp. Phys. 7, 241 (1972).Google Scholar
  8. 8.
    R. B. Dingle,Proc. Roy. Soc. A201, 545 (1950).Google Scholar
  9. 9.
    D. K. C. MacDonald and K. Sarginson,Proc. Roy. Soc. A203, 223 (1950).Google Scholar
  10. 10.
    R. I. Boughton and M. Yaqub,Phys. Kond. Materie 9, 138 (1969).Google Scholar
  11. 11.
    A. H. Wilson,The Theory of Metals, 2nd ed. (Cambridge, 1953).Google Scholar
  12. 12.
    P. E. Nielsen and P. L. Taylor,Phys. Rev. Letters 25, 371 (1970).Google Scholar
  13. 13.
    P. E. Nielsen and P. L. Taylor, AEC Technical Rep. No. 65 (COO-623-152), unpublished.Google Scholar
  14. 14.
    J. G. Collins and J. M. Ziman,Proc. Roy. Soc. A264, 60 (1961).Google Scholar
  15. 15.
    L. Morelli, Ph.D. Thesis, Northeastern Univ., 1972, unpublished.Google Scholar
  16. 16.
    J. M. Ziman,Electrons and Phonons (Oxford, 1960), pp. 396 ff.Google Scholar
  17. 17.
    R. Nossek,Z. Naturforsch. 16a, 1162, (1961).Google Scholar
  18. 18.
    F. W. Gorter and L. J. Nordermeer,Physica 6, 507 (1970).Google Scholar
  19. 19.
    A. O. E. Animalu and V. Heine,Phil. Mag. 12, 1249 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • S. N. Mahajan
    • 1
  • J. G. Daunt
    • 1
  • R. I. Boughton
    • 2
  • M. Yaqub
    • 3
  1. 1.Cryogenics CenterStevens Institute of TechnologyHoboken
  2. 2.Physics DepartmentNortheastern UniversityBoston
  3. 3.Physics DepartmentOhio State UniversityColumbus

Personalised recommendations