Advertisement

Journal of Low Temperature Physics

, Volume 13, Issue 5–6, pp 553–571 | Cite as

Effect of annealing on the anomalous electrical resistivity of dilute copper-iron alloys at low temperatures

  • R. G. Sharma
  • M. S. R. Chari
Article

Abstract

Electrical resistivity measurements in the temperature range 1.5–35 K on two copper alloys containing 115 and 380 atomic ppm iron are reported, in their unannealed state and also after annealing for 16 and 66 h in fore-vacuum at 530–550°C. Below the temperature of the resistivity minimum the impurity resistivity Δρ has the Kondo lnT behavior. However, in the liquid helium region the resistivity drops from its value atT=0, in proportion toT2, conforming to Nagaoka's theory forT<TK/5. The Kondo temperatureTK is evaluated from the Δρ versusT2 plots using Nagaoka's equation and is found to decrease with increasing concentration. Annealing is found to reduce the effective iron concentration and alsoTK. The impurity resistivity per atomic percent in our samples can be expressed as a universal function ofT/TK at the lowest temperatures underTK/4.

Keywords

Iron Helium Electrical Resistivity Iron Concentration Resistivity Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kondo,Progr. Theoret. Phys. 32, 37 (1964).Google Scholar
  2. 2.
    K. Yosida,Phys. Rev. 106, 893 (1957);107, 396 (1957).Google Scholar
  3. 3.
    Y. Nagaoka,Phys. Rev. 138A, 1112 (1965).Google Scholar
  4. 4.
    H. Suhl and D. Wong,Physics 3, 17 (1967).Google Scholar
  5. 5.
    D. R. Hamann,Phys. Rev. 158, 570 (1967).Google Scholar
  6. 6.
    M. D. Daybell and W. A. Steyert,Phys. Rev. Letters 18, 398 (1967);Phys. Rev. 167, 536 (1968).Google Scholar
  7. 7.
    M. D. Daybell, W. P. Pratt and W. A. Steyert,Phys. Rev. Letters 21, 353 (1968).Google Scholar
  8. 8.
    K. Svensson, inProc. Xth Int. Conf. Low Temp. Phys. Moscow, 1966, Vol. IV, p. 267.Google Scholar
  9. 9.
    E. F. Wassermann, H. Falke, and H. P. Jablonski, inProc. 12th Int. Conf. Low Temp. Phys. Kyoto, 1970, p. 243:Solid State Commun. 9, 1171 (1971).Google Scholar
  10. 10.
    S. G. Humble, K. Svensson, and H. U. Åström,Physica Scripta 1, 151 (1970).Google Scholar
  11. 11.
    A. Kraut and H. Wollenberger,Solid State Commun. 9, 1169 (1971).Google Scholar
  12. 12.
    E. Brewig, W. Kierspe, U. Schotte, and D. Wagner,J. Phys. Chem. Solids 30, 483 (1969).Google Scholar
  13. 13.
    E. L. Christenson,J. Appl. Phys. 34, 1485 (1963).Google Scholar
  14. 14.
    J. E. A. Alderson and C. M. Hurd,J. Phys. Chem. Solids 32, 2075 (1971).Google Scholar
  15. 15.
    W. M. Star, Doctorate Thesis, Kammerlingh Onnes Laboratory, Leiden, 1971.Google Scholar
  16. 16.
    J. L. Tholence and R. Tournier,Phys. Rev. Letters 25, 867 (1970).Google Scholar
  17. 17.
    J. W. Loram, T. E. Whall, and P. J. Ford,Phys. Rev. B 2, 857 (1970).Google Scholar
  18. 18.
    B. Knook, Doctorate Thesis, University of Leiden, 1962.Google Scholar
  19. 19.
    J. S. Schilling, W. B. Holzapfel, and E. Luscher,Phys. Letters 38A, 29 (1972).Google Scholar
  20. 20.
    G. K. White,Can. J. Phys. 33, 19 (1955).Google Scholar
  21. 21.
    P. L. Garbarino and C. A. Reynolds,Phys. Rev. 134, 167 (1970).Google Scholar
  22. 22.
    H. U. Everts and J. Keller,Z. Phys. 281, 240 (1970).Google Scholar
  23. 23.
    W. M. Star and G. J. Nieuwenhuys,Phys. Letters 30A, 22 (1969).Google Scholar
  24. 24.
    A. P. Klein,Phys. Rev. 172, 520 (1968).Google Scholar
  25. 25.
    A. A. Abrikosov,Zh. Eksperim. i Teor. Fiz. 53, 2109 (1967);Soviet Phys.—JETP 26, 168 (1968).Google Scholar
  26. 26.
    N. Rivier and M. J. Zuckermann,Phys. Rev. Letters 21, 904 (1968).Google Scholar
  27. 27.
    M. J. Levine, T. V. Ramakrishnan, and R. A. Weiner,Phys. Rev. Letters 20, 1370 (1968).Google Scholar
  28. 28.
    P. Lederer and D. L. Mills,Solid State Commun. 5, 131 (1967);Phys. Rev. 165, 837 (1968);Phys. Rev. Letters 19, 904 (1968).Google Scholar
  29. 29.
    A. P. Caplin and C. Rizzuto,Phys. Rev. Letters 21, 746 (1968).Google Scholar
  30. 30.
    Y. Nagaoka,J. Phys. Chem. Solids 27, 1139 (1966).Google Scholar
  31. 31.
    E. Boucai, B. Lecoanet, J. Pilon, J. L. Tholence and R. Tournier,Phys. Rev. B 3, 3834 (1971).Google Scholar
  32. 32.
    R. Tournier and A. Blandin,Phys. Rev. Letters 24, 397 (1970).Google Scholar
  33. 33.
    P. G. de Gennes,J. Phys. Radium 23, 630 (1962); J. Friedel and A. Guinier (eds.),Metallic Solid Solutions (Benjamin, New York, 1963), Chap. VI.Google Scholar
  34. 34.
    M. S. R. Chari,Phys. Kond. Materie 11, 317 (1970).Google Scholar
  35. 35.
    M. S. R. Chari, N. S. Natarajan, and R. G. Sharma,J. Low Temp. Phys. 4, 503 (1971).Google Scholar
  36. 36.
    M. S. R. Chari, N. S. Natarajan, and R. G. Sharma,J. Low Temp. Phys. 5, 197 (1971).Google Scholar
  37. 37.
    D. Korn,Z. Physik 238, 275 (1970).Google Scholar
  38. 38.
    H. Wiebking,Z. Physik 232, 126 (1970).Google Scholar
  39. 39.
    M. S. R. Chari, N. S. Natarajan, and R. G. Sharma,J. Low Temp. Phys. 10, 299 (1973).Google Scholar
  40. 40.
    J. Souletie and R. Tournier,J. de Phys. Suppl. 32, C1 (1971).Google Scholar
  41. 41.
    W. Buckel and R. Hilsch,Z. Physik 132, 420 (1952);138, 109 (1954).Google Scholar
  42. 42.
    P. F. Chester and G. O. Jones,Phil. Mag. 44, 1284 (1953).Google Scholar
  43. 43.
    J. A. Applebaum and J. Kondo,Phys. Rev. Letters 19, 906 (1967).Google Scholar
  44. 44.
    D. R. Hamann and J. A. Applebaum,Phys. Rev. 180, 334 (1969).Google Scholar
  45. 45.
    A. J. Heeger, L. B. Welsh, M. A. Jensen, and G. Gladstone,Phys. Rev. 172, 302 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • R. G. Sharma
    • 1
  • M. S. R. Chari
    • 1
  1. 1.National Physical LaboratoryNew DelhiIndia

Personalised recommendations