Oxidation of Metals

, Volume 29, Issue 1–2, pp 75–102 | Cite as

Diffusional transport during the cyclic oxidation of γ+β, Ni-Cr-Al(Y, Zr) alloys

  • J. A. Nesbitt
  • R. W. Heckel
Article

Abstract

The cyclic oxidation behavior of several cast γ+β, Ni-Cr-Al(Y, Zr) alloys and one LPPS γ+β, Ni-Co-Cr-Al(Y) alloy was examined (γ, fcc; β, NiAl structure). Cyclic oxidation was performed by cycling between 1200°C and approximately 70°C. Oxide morphologies and microstructural changes during cyclic oxidation were noted. Recession of the high-Al β phase was nonparabolic with time. Kirkendall porosity resulting from diffusional transport within the alloy was observed in the near-surface γ-phase layer of one alloy. Concentration profiles for Ni, Cr, and Al were measured in the γ-phase layer after various cyclic oxidation exposures. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide-metal interface due to a high demand for Al (a high rate of Al consumption) associated with oxide scale cracking and spalling. In addition, diffusion paths plotted on the ternary phase diagram shifted to higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption, and highest Al content, underwent breakaway oxidation after 500 1-hr cycles at 1200°C. Breakaway oxidation occurred when the Al concentration at the oxide-metal interface approached zero. The relationship between the Al transport in the alloy and breakaway oxidation is discussed.

Key words

Ni-Cr-Al Alloys oxidation diffusional transport breakaway oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Shankar, D. E. Koenig, and L. E. Dardi,J. Met. 33(10), 13 (1981).Google Scholar
  2. 2.
    D. K. Gupta and D. S. Duvall, inSuperalloys 1984, M. Gell, C. S. Kortovich, R. H. Bricknell, W. B. Kent, and J. F. Radavich, eds. (Metallurgical Society of AIME, New York, 1984), pp. 711–720.Google Scholar
  3. 3.
    G. W. Goward, inHigh Temperature Corrosion, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, 1983), pp. 553–560.Google Scholar
  4. 4.
    A. R. Nicoll, inCoatings and Surface Treatment for Corrosion and Wear Resistance, K. N. Stafford, P. K. Datta, and C. G. Googan, eds. (Ellis Horwood Limited, West Sussex, England, 1984), pp. 180–212.Google Scholar
  5. 5.
    F. S. Pettit and G. W. Goward, inCoatings for High Temperature Applications, E. Lang, ed. (Applied Science Publishers, London, 1983), pp. 341–359.Google Scholar
  6. 6.
    P. Tomaszewicz and G. R. Wallwork,Rev. High Temp. Mat. 5, 49 (1982).Google Scholar
  7. 7.
    J. E. Restall,Metallurgia 46, 676 (1979).Google Scholar
  8. 8.
    G. C. Wood and F. H. Stott, inHigh Temperature Corrosion, R. A. Rapp, ed., (National Association of Corrosion Engineers, Houston, 1983), pp. 227–250.Google Scholar
  9. 9.
    H. Hindam and D. P. Whittle,Oxid. Met. 18, 245 (1972).Google Scholar
  10. 10.
    J. K. Tien and F. S. Pettit,Met. Trans. 3, 1587 (1972).Google Scholar
  11. 11.
    I. A. Kvernes,Oxid. Met. 6, 45 (1973).Google Scholar
  12. 12.
    A. Kumar, M. Nasrallah, and D. L. Douglass,Oxid. Met. 8, 227 (1974).Google Scholar
  13. 13.
    J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8, 139 (1974).Google Scholar
  14. 14.
    C. S. Giggins and F. S. Pettit,Oxide Scale Adherence Mechanisms (Pratt and Whitney Aircraft, East Hartford, Connecticut, PWA-5364 (1975).Google Scholar
  15. 15.
    I. M. Allam, D. P. Whittle, and J. Stringer,Oxid. Met. 12, 35 (1978).Google Scholar
  16. 16.
    I. M. Allam, D. P. Whittle, and J. Stringer, inCorrosion-Erosion Behavior of Materials, K. Natesan, ed. (Metallurgical Society of AIME, New York, 1980), pp. 103–117.Google Scholar
  17. 17.
    F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).Google Scholar
  18. 18.
    F. H. Stott, G. C. Wood, and F. A. Golightly,Corros. Sci. 19, 869 (1979).Google Scholar
  19. 19.
    F. H. Stott, F. A. Golightly, and G. C. Wood,Corros. Sci. 19, 889 (1979).Google Scholar
  20. 20.
    F. A. Golightly, G. C. Wood, and F. H. Stott,Oxid. Met. 14, 217 (1980).Google Scholar
  21. 21.
    J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe,Corros. Sci. 20, 351 (1980).Google Scholar
  22. 22.
    T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,Oxid. Met. 22, 83 (1984).Google Scholar
  23. 23.
    T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,J. Electrochem. Soc. 131, 923 (1984).Google Scholar
  24. 24.
    C. A. Barrett and C. E. Lowell,Oxid. Met. 11, 199 (1977).Google Scholar
  25. 25.
    K. P. R. Reddy, J. L. Smialek, and A. R. Cooper,Oxid. Met. 17, 429 (1982).Google Scholar
  26. 26.
    L. A. Larsen, M. Prutton, H. Poppa, and J. Smialek,J. Vac. Sci. Technol. 20, 1403 (1982).Google Scholar
  27. 27.
    A. S. Khan, C. E. Lowell, and C. A. Barrett,J. Electrochem. Soc. 127, 670 (1980).Google Scholar
  28. 28.
    C. A. Barrett, A. S. Khan, and C. E. Lowell,J. Electrochem. Soc. 128, 25 (1981).Google Scholar
  29. 29.
    T. Moroishi, H. Fujikawa, and H. Makiura,J. Electrochem. Soc. 126, 2173 (1979).Google Scholar
  30. 30.
    C. S. Giggins, B. H. Kear, F. S. Pettit, and J. K. Tien,Met. Trans. 5, 1685 (1974).Google Scholar
  31. 31.
    D. P. Whittle, inHigh Temperature Corrosion, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, 1983), pp. 171–183.Google Scholar
  32. 32.
    A. G. Evans, G. B. Crumley, and R. E. Demaray,Oxid. Met. 20, 193 (1983).Google Scholar
  33. 33.
    C. H. Hsueh and A. G. Evans,J. Appl. Phys. 54, 6672 (1983).Google Scholar
  34. 34.
    T. E. Strangman,Thin Solid Films 127, 93 (1985).Google Scholar
  35. 35.
    N. P. Anderson and K. D. Sheffler,Development of Strain Tolerant Thermal Barrier Coating Systems, (Pratt and Whitney Aircraft, East Hartford, Connecticut, NASA CR-168251 PWA-5777-29, 1983).Google Scholar
  36. 36.
    C. E. Lowell and D. L. Deadmore,Oxid. Met. 14, 325 (1980).Google Scholar
  37. 37.
    EDIT/EP ZAF Correction Program by EDAX International, Inc.Google Scholar
  38. 38.
    J. A. Nesbitt,Solute Transport During the Cyclic Oxidation of Ni-Cr-Al Alloys, NASA CR-165544 (1982).Google Scholar
  39. 39.
    J. A. Nesbitt and R. W. Heckel,Met. Trans. A 18, 2061 (1987).Google Scholar
  40. 40.
    J. A. Nesbitt and R. W. Heckel,Met. Trans. A 18, 2087 (1987).Google Scholar
  41. 41.
    C. S. Giggins and F. S. Pettit,J. Electrochem. Soc. 118, 1782 (1971).Google Scholar
  42. 42.
    C. Wagner,J. Electrochem. Soc. 99, 369 (1952).Google Scholar
  43. 43.
    B. D. Bastow, D. P. Whittle, and G. C. Wood,Oxid. Met. 12, 413 (1978).Google Scholar
  44. 44.
    H. Y. Ku,J. Appl. Phys. 35, 3391 (1964).Google Scholar
  45. 45.
    R. Hultgren,Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, Ohio, 1973).Google Scholar
  46. 46.
    F. S. Pettit,Trans. AIME 239, 1296 (1976).Google Scholar
  47. 47.
    S. R. Levine,Met. Trans. A 9, 1237 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • J. A. Nesbitt
    • 1
  • R. W. Heckel
    • 2
  1. 1.Lewis Research CenterNational Aeronautics and Space AdministrationCleveland
  2. 2.Michigan Technological UniversityHoughton

Personalised recommendations