Oxidation of Metals

, Volume 19, Issue 1–2, pp 19–25 | Cite as

Accuracy of the linear gradient approximation for diffusion-controlled growth of iron sulfide scales

  • R. E. Pawel
Article
  • 39 Downloads

Abstract

The growth of a defective scale is analyzed in terms of an idealized, singlelayer, moving-boundary problem with constant diffusivity. The form of the solution is chosen to emphasize the magnitude of the departure from a linear concentration gradient of the diffusing species in the growing scale. The departure is shown to be a function of the k p /D ratio (where kp is the parabolic rate constant, and D is the chemical diffusivity), and thus is directly related to the defect concentration. For iron sulfide under most conditions, and for other compound scales with defect concentrations less than about 10%, the linear gradient assumption is shown to be reasonable.

Key Words

Diffusion layer growth defects iron sulfide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Fryt, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 126 673 (1979).Google Scholar
  2. 2.
    E. M. Fryt, V. S. Bhide, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 126 683 (1979).Google Scholar
  3. 3.
    M. Danielewski, S. Mrowec, and A. Stoklosa,Oxid Met. 17 77 (1982).Google Scholar
  4. 4.
    M. Danielewski, S. Mrowec, and A. Stoklosa,Solid State Ionics 1 287 (1980).Google Scholar
  5. 5.
    R. E. Pawel,J. Electrochem. Soc. 126 1111 (1979).Google Scholar
  6. 6.
    M. Danielewski, Bull. Acad. Pol. Sci. Ser. Sci. Chim.27 425 (1979).Google Scholar
  7. 7.
    J. P. Hirth and R. A. Rapp,Oxid. Met. 11 57 (1977).Google Scholar
  8. 8.
    For example, F. Booth,Trans. Faraday Soc. 44 796 (1948).Google Scholar
  9. 9.
    W. Yost, Chap 1 inDiffusion, (Academic Press, New York, 1960).Google Scholar
  10. 10.
    On the basis of X-ray measurements of R. Perthel,Ann. Physik 5 273 (1960); F. Gronvold and H. Haraldsen,Acta Chem. Scand. 6 1452 (1952).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • R. E. Pawel
    • 1
  1. 1.Oak Ridge National LaboratoryMetals and Ceramics DivisionOak Ridge

Personalised recommendations