Colloid and Polymer Science

, Volume 270, Issue 10, pp 999–1008 | Cite as

Atomistic calculations on the high-temperature condis phase of poly(trans-1,4-butadiene) (PTBD)

  • M. Chwalek
  • P. C. Hägele
Original Contributions


The structure of the low-temperature phase of poly(trans-1,4-butadiene) was calculated by means of semiempirical atomistic potentials. Without using any symmetry assumptions there is good agreement with experimental data. In order to understand the high-temperature phase, packing energy calculations were performed with different chain conformations. There are a great number of possible packing modes. They show an approximately linear relation between defect volume and defect energy. The results of these calculations are taken as a basis for a thermodynamic treatment (cooperative pair theory) of the phase transition. The experimental transition enthalpy can only partially be explained by intermolecular interactions, and the defect energy of the various intramolecular equilibrium conformations is not sufficient to explain the difference. A refined treatment with a simultaneous inter-and intramolecular minimization of the energy reveals that the chains are not in their intramolecular equilibrium state. This results in an additional intramolecular defect energy which seems to lead to an understanding of the experimental transition data.

Key words

Poly(trans-1,4-butadiene) conformational analysis atomistic calculations packing analysis condis phase phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finter J, Wegner G (1981) Makromol Chem 182:1859–1874Google Scholar
  2. 2.
    Kijima T, Imamura M, Kusumoto N (1976) Polymer 17:249–253Google Scholar
  3. 3.
    Möller M (1988) Makromol Chem, Rapid Commun 9:107–114Google Scholar
  4. 4.
    Hsu SL, Krimm S (1976) Journal of Polymer Science: Polymer Phys Ed 14:521–529Google Scholar
  5. 5.
    Tatsumi T, Fukushima T, Imada K, Takayanagi M (1967) J Macromol Sci-Phys B 1(3):459–483Google Scholar
  6. 6.
    Schilling FC, Gomez MA, Tonelli AE, Bovey FA, Woodward AE (1987) Macromol 20(11):2954–2957Google Scholar
  7. 7.
    Iwayanagi S, Sakurai I, Sakurai T (1968) J Macromol Sci-Phys B 2(2):163–177Google Scholar
  8. 8.
    Suehiro K, Takayanagi M (1970) J Macromol Sci-Phys B 4(1):39–46Google Scholar
  9. 9.
    Natta G, Corradini P (1959) Journal of Polymer Science 39:29–46Google Scholar
  10. 10.
    Ng S-B, Stellman JM, Woodward AE (1973) J Macromol Sci-Phys B 7(3):539–547Google Scholar
  11. 11.
    Bautz G, Leute U, Dollhopf W, Hägele PC (1981) Colloid Polym Sci 259:714Google Scholar
  12. 12.
    Corradini P (1969) Polymer Letters 7:211–214Google Scholar
  13. 13.
    Stellman JM, Woodward AE, Stellman SD (1973) Macromol 6(3):330–336Google Scholar
  14. 14.
    Evans H, Woodward AE (1978) Macromol 11:685–690Google Scholar
  15. 15.
    De Rosa C, Napolitano R, Pirozzi B (1985) Polymer 26:2039–2042Google Scholar
  16. 16.
    mark JE (1967) J Am Chem Soc 89:6829–6835Google Scholar
  17. 17.
    Martuscelli E (1967) Acta Cryst 23:1086–1093Google Scholar
  18. 18.
    Grossmann HP, Pechhold W (1986) Colloid Polym Sci 264:415–422Google Scholar
  19. 19.
    Bautz G (1978) thesis, UlmGoogle Scholar
  20. 20.
    Schmieg C, Hägele PC, Beck L (1982) J Compur Phys 48(1):45Google Scholar
  21. 21.
    Schmieg J (1984) thesis, UlmGoogle Scholar
  22. 22.
    Billmeyer Jr FW (1957) J Appl Phys 28(10):1114Google Scholar
  23. 23.
    Sumpter BG, Noid DW, Wunderlich B (1990) J Chem Phys 93(9):6875–6889Google Scholar

Copyright information

© Steinkopff-Verlag 1992

Authors and Affiliations

  • M. Chwalek
    • 1
  • P. C. Hägele
    • 1
  1. 1.Abteilung Angewandte PhysikUniversität UlmUlmFRG

Personalised recommendations