Journal of inclusion phenomena

, Volume 4, Issue 2, pp 191–198 | Cite as

Binding neutral guests to concave surfaces of molecular hosts. Rigid structural model for complexation between two lipophilic entities

  • Israel Goldberg


The 1:2 compound formed between a new cavitand C40H48Si4O8 [chemical name: 5,10;12,17;19,24;26,3-tetrakis(dimethylsiladioxa)-1,8,15,22-tetramethyl[14]metacyclophane] and CS2 (M r =921.42) provided a suitable structural model for a rigid inclusion complex between uncharged lipophilic molecules. The detailed structure of this compound has been determined by single crystal X-ray diffraction at 128 K (Crystal data:a=11.233,b=20.018,c=10.069 Å, β=90.84o,Z=2, space groupP21/m). Anisotropic refinement converged atR=0.040 for 3768 reflections above the intensity threshold, leading to positional and thermal parameters of a relatively high precision. The cavitand has an enforced cavity appropriately sized to include only slim linear guests. The crystallographic analysis revealed a 1:1 molecular inclusion complex with CS2, the guest species being almost entirely encapsulated within the ‘basket’-shaped cavity of the host. The complex is stabilized by dispersion forces. All the guest atoms lie within van der Waals distances from the surrounding sections of the host and are well ordered. The second CS2 molecule is located in the crystal lattice between molecules of the complex and is slightly disordered. Mirror plane symmetry characterizes the entire structure.

Key words

Molecular inclusion host-guest van der Waals complex cavitands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Lehn:Pure Appl. Chem. 51, 979 (1979);52, 2303, 2441 (1980); D. J. Cram and K. N. Trueblood:Top. Curr. Chem. 98, 43 (1981); E. Blasius and K.-P. Janzen:Top. Curr. Chem. 98, 163 (1981); R. Hilgenfeld and W. Saenger:Top. Curr. Chem. 101, 1 (1982); R. M. Kellog:Top. Curr. Chem. 101, 111 (1982); J. F. Stoddart: inProgress in Macrocyclic Chemistry, Vol. 2 (Eds. R. M. Izatt and J. J. Christensen), p. 179, Academic Press, 1982; I. Goldberg: inInclusion Compounds, Vol. 2 (Eds. J. L. Atwood, J. E. D. Davies and D. D. MacNicol), p. 261, Academic Press, 1984.Google Scholar
  2. 2.
    F. Vögtle, H. Sieger and W. M. Müller:Top. Curr. Chem. 98, 107 (1981); F. Vögtle and W. M. Müller:J. Inci. Phenom. 1, 369 (1984). More recent articles: S. P. Miller and H. W. Whitlock Jr.:J. Am. Chem. Soc. 106, 1492 (1984); I. Tabushi, K. Yamamura, H. Nonoguchi, K. Hirotsu and T. Higuchi:J. Am. Chem. Soc. 106, 2621 (1984); J. Canceill, M. Cesario, A. Collet, J. Guilhem and C. Pascard:J. Chem. Soc. Chem. Commun., 361 (1985).Google Scholar
  3. 3.
    D. J. Cram, K. D. Stewart, I. Goldberg and K. N. Trueblood:J. Am. Chem. Soc. 107, 2574 (1985).Google Scholar
  4. 4.
    C. E. Strouse: Dept. of Chemistry, Univ. of California, Los Angeles, U.S.A. (1984).Google Scholar
  5. 5.
    P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, and M. M. Woolfson: MULTAN80.A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ of York, England and Louvain, Belgium (1980).Google Scholar
  6. 6.
    G. M. Sheldrick: SHELX76.Program for Crystal Structure Determination. Univ. of Cambridge, England (1976).Google Scholar
  7. 7.
    V. Schomaker and K. N. Trueblood:Acta Crystallogr. B24, 63 (1968).Google Scholar
  8. 8.
    I. Goldberg:J. Am. Chem. Soc. 104, 7077 (1982); H. R. Allcock, W. R. Allen, E. C. Bissell, L. A. Smeltz and M. Teeter:J. Am. Chem. Soc. 98, 5120 (1976).Google Scholar
  9. 9.
    D. J. Cram and J. M. Cram:Selectivity, A Goal for Synthetic Efficiency (Eds. W. Bartman and B. M. Trost), p. 42, Werlag Chemie (1983).Google Scholar
  10. 10.
    A. G. S. Högberg:J. Am. Chem. Soc. 102, 6046 (1980).Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Israel Goldberg
    • 1
  1. 1.School of ChemistryTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations