Skip to main content
Log in

Lattice dynamics, thermal expansion, and bulk modulus of ruthenium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The lattice dynamics, third-order elastic (TOE) constants, and the temperature variation of the volume Grüneisen function of ruthenium have been calculated using the nearest neighbor central interaction model for hexagonal metals proposed by Srinivasan and Ramji Rao. The TOE constants have been employed to calculate the low-temperature limit\(\bar \gamma _L \) of the lattice thermal expansion, the Anderson-Grüneisen (AG) parameter δ, and the second Grüneisen constantq of ruthenium.\(\bar \gamma _L \) has the value 2.79 for ruthenium. The high-temperature limit\(\bar \gamma _H \) has the value 3.31, which agrees well with the experimental value 3.25 obtained from thermal expansion and specific heat data of ruthenium. Anderson's theory has been used to explain the temperature dependence of the bulk modulus of ruthenium up to 923 K and has been compared with the experimental values obtained from the elastic constant data of Fisher and Dever. The variation of the lattice parameters of ruthenium with hydrostatic pressure up to 400 kbar has been calculated from its TOE constant data using the extrapolation formula of Thurston and has been compared with the experimental results of Clendenen and Drickamer. The fit is remarkably good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Fisher and D. Dever,Trans. Met. Soc. AIME 239, 48 (1967).

    Google Scholar 

  2. K. A. Gschneidner, Jr., inSolid State Physics, Vol. 16, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1964), p. 413.

    Google Scholar 

  3. R. L. Clendenen and H. G. Drickamer,J. Phys. Chem. Solids 25, 865 (1964).

    Google Scholar 

  4. R. Srinivasan and R. Ramji Rao, inInelastic Scattering of Neutrons (IAEA, Vienna, 1965), Vol. 1, p. 325.

    Google Scholar 

  5. R. Ramji Rao and R. Srinivasan,Phys. Stat. Sol. 29, 865 (1968).

    Google Scholar 

  6. R. Ramji Rao and R. Srinivasan,Phys. Stat. Sol. 31, K39 (1969).

  7. R. Ramji Rao,Acta Cryst. A31, 267 (1975); R. Ramji Rao and A. Ramanand,Acta Cryst. A33 (1977).

    Google Scholar 

  8. R. Ramji Rao and A. Ramanand,J. Low Temp. Phys. 365 (1977).

  9. O. L. Anderson,Phys. Rev. 144, 553 (1966).

    Google Scholar 

  10. R. N. Thurston,J. Acoust. Soc. Am. 41, 1093 (1967).

    Google Scholar 

  11. F. D. Murnaghan,Finite Deformation of an Elastic Solid (Wiley, New York, 1951).

    Google Scholar 

  12. R. Ramji Rao and R. Srinivasan,Proc. Ind. Nat. Acad. Sci. A36, 97 (1970).

    Google Scholar 

  13. K. Brugger and T. C. Fritz,Phys. Rev. A 157, 524 (1967).

    Google Scholar 

  14. M. Blackman,Proc. Phys. Soc. Lond. B 70, 827 (1957).

    Google Scholar 

  15. R. Ramji Rao,Phys. Rev. B 10, 4173 (1974).

    Google Scholar 

  16. American Institute of Physics Handbook, II ed. (McGraw-Hill, New York, 1963).

  17. W. A. Basset, T. Takahasi, H. K. Mao, and J. S. Weaver,J. Appl. Phys. 39, 319 (1968).

    Google Scholar 

  18. R. Ramji Rao,J. Phys. Soc. Japan 38, 1080 (1975).

    Google Scholar 

  19. F. D. Murnaghan,Proc. Nat. Acad. Sci. 30, 244 (1944).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramji Rao, R., Ramanand, A. Lattice dynamics, thermal expansion, and bulk modulus of ruthenium. J Low Temp Phys 27, 837–850 (1977). https://doi.org/10.1007/BF00655710

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655710

Keywords

Navigation