Journal of Low Temperature Physics

, Volume 27, Issue 5–6, pp 737–745 | Cite as

Proximity effect for superconductors containing transition metal impurities. I

  • Kazushige Machida


The superconducting proximity effect in a superconductor-normal metal sandwich system in which the metal on the normal side contains dilute 3d transition metal impurities is investigated theoretically. The Kaiser-Zuckermann theory, based on McMillan's tunneling model, is extended by the use of the Hartree-Fock version of the Anderson model to give rise to a bound state in an effective energy gap. For the purpose of analyzing experimental results, the transition temperature and the critical concentration for gapless superconductivity are calculated. It is also demonstrated that with increasing impurity concentration, an impurity band merges into a gap, which may correspond to recent experimental findings.


Impurity Concentration Effective Energy Proximity Effect Anderson Model Impurity Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Dumoulin, E. Guyon, and P. Nedellec,J. Phys. (Paris)34, 1021 (1973);Phys. Rev. Lett. 34, 264 (1975); and preprint.Google Scholar
  2. 2.
    E. D. Ramos,Solid State Commun. 15, 1161 (1974).Google Scholar
  3. 3.
    M. B. Maple, inMagnetism V, H. Suhl, ed. (Academic Press, 1973), Chapter 10.Google Scholar
  4. 4.
    A. B. Kaiser and M. J. Zuckermann,Phys. Rev. B 1, 229 (1970).Google Scholar
  5. 5.
    W. L. McMillan,Phys. Rev. 175, 537 (1968).Google Scholar
  6. 6.
    A. A. Abrikosov and L. P. Gor'kov,Zh. Eksp. Teor. Fiz. 39, 1781 (1961) [English transl.,Sov. Phys.—JETP 12, 1243 (1961)]; S. Skalski, O. Betbeder-Matibet, and P. R. Weiss,Phys. Rev. 136, A1500 (1964).Google Scholar
  7. 7.
    P. W. Anderson,Phys. Rev. 124, 41 (1961).Google Scholar
  8. 8.
    K. Machida and F. Shibata,Prog. Theor. Phys. 47, 1817 (1972).Google Scholar
  9. 9.
    H. Shiba,Prog. Theor. Phys. 50, 50 (1973).Google Scholar
  10. 10.
    E. Müller-Hartmann, inMagnetism V, H. Suhl, ed. (Academic Press, 1973), Chapter 12.Google Scholar
  11. 11.
    S. Takayanagi and T. Sugawara,J. Phys. Soc. Japan 38, 718 (1975); D. M. Ginsberg,Phys. Rev. B 10, 4044 (1974);13, 2895 (1976).Google Scholar
  12. 12.
    M. J. Zuckermann,Phys. Rev. 140, A899 (1965); K. Takanaka and F. Takano,Prog. Theor. Phys. 36, 1080 (1966); A. B. Kaiser,J. Phys. C 3, 410 (1970); K. Machida and A. Nakanishi,Prog. Theor. Phys. 55, 1 (1976).Google Scholar

Copyright information

© Plenum Publishing Corp 1977

Authors and Affiliations

  • Kazushige Machida
    • 1
  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations