Skip to main content
Log in

Raman scatterings of colloidal silver and gold prepared in the presence of a nonionic surfactant, Surfynol 465

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The FT-Raman and resonance Raman scatterings of colloidal silver or gold formed in the presence of a nonionic surfactant, Surfynol 465, were studied. The intensity of Raman scattering of colloidal solution was strongly affected by the power of laser for excitation. At the low power, the intensity of scattering and the spectrum of colloidal solution were normal. However, at the high power, the intensity of Raman scattering anomalously increased over the whole frequency region, suggesting the surface enhanced Raman scattering (SERS) on colloidal silver or gold. And in the Raman spectra new bands were found in addition to bands of starting materials. Through the assignment of new bands, the working mechanism of Surfynol 465 for the formation of colloidal silver or gold was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sato S, Kishimoto H (1988) J Colloid Interface Sci 126:108–113

    Google Scholar 

  2. Sato S (1989) J Phys Chem 93: 4829–4833

    Google Scholar 

  3. Sato S, Kishimoto H (1989) In: Mittal KL (ed) Surfactants in Solution, Vol 7. Plenum, New York, pp 341–357

    Google Scholar 

  4. Kleintjes HP, Schwartz J (1990) In: Karsa DR (ed) Industrial Applications of Surfactants II. Royal Society of Chemistry, Cambridge, pp. 150–164

    Google Scholar 

  5. Sato S, Kishimoto H (1992) J Surface Sci Technol 8:209–216

    Google Scholar 

  6. Sato S, Sezaki H, Kishimoto H (1993) Prog Colloid Poly Sci 93:277–278

    Google Scholar 

  7. Sato S, Asai N, Yonese M, Colloid Polym Sci, in press

  8. Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 275:790–798

    Google Scholar 

  9. Wetzel H, Gerischer H (1980) Chem Phys Letters 76:460–464

    Google Scholar 

  10. Fischmann M, Hendra PJ, McQuillan A (1974) J Chem Phys Letters 26: 163–166

    Google Scholar 

  11. Kerker M, Siiman O, Bumm LA, Wang DS (1980) Appl Opt 19:3253–3255

    Google Scholar 

  12. Mabuchi M, Takenaka T, Fujiyoshi Y, Uyeda N (1982) Surface Sci 119:150–158

    Google Scholar 

  13. Garrell RL, Shaw KD, Krimm S (1981) J Chem Phys 75:4155–4157

    Google Scholar 

  14. Manzel K, Schulze W (1982) Chem Phys Letters 85:183–186

    Google Scholar 

  15. Gu XJ, Akers KL, Moskovits M (1992) J Phys Chem 96:383–387

    Google Scholar 

  16. Matejka P, Vlockova B, Vohlidal J, Pancoska P, Baumruk V (1992) J Phys Chem 96:1361–1366

    Google Scholar 

  17. Moskovits M (1985) Review Modern Phys 57:783–826

    Google Scholar 

  18. Puddephatt RJ (1978) The Chemistry of Gold, Elsevier, New York

    Google Scholar 

  19. Schrader B (1989) Raman/Infrared Atlas of Organic Compounds 2nd, VCH Verl. Weinheim

    Google Scholar 

  20. Kalyanasundaram K, Thomas JK (1976) J Phys Chem 80:1462–1473

    Google Scholar 

  21. Lide DR (ed) (1990) CRC Handbook of Chemistry and Physics 71th, Section 9, CRC Press, Boston

    Google Scholar 

  22. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to Infrared and Raman Spectroscopy 3rd, Academic Press, New York

    Google Scholar 

  23. Lin-Vien, Colthup NB, Fateley WG, Grasselli JG (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York

    Google Scholar 

  24. Lloyd WG (1956) J Am Chem Soc 78:72–75

    Google Scholar 

  25. Hamburger R, Azaz E, Donbrow M (1975) Pharm Acta Helv 50:10–17

    Google Scholar 

  26. Donbrow M (1987) In: Schick MJ (ed) Nonionic Surfactants: Physical Chemistry. Surfactant Science Series, Vol 23. Marcel Dekker, New York, pp 1011–1072

    Google Scholar 

  27. Winstein S, Lucas HJ (1938) J Am Chem Soc 60:836–847

    Google Scholar 

  28. Mulliken RS (1952) J Am Chem Soc 74:811–825

    Google Scholar 

  29. Sabater JM, Merchan M, Gil IN Martin PMV (1988) J Phys Chem 92:4853–4859

    Google Scholar 

  30. Stuve EM, Madix RJ (1985) J Phys Chem 89:3183–3185

    Google Scholar 

  31. Johnson BB, Peticolas WL (1976) Ann Rev Phys Chem 27:465–491

    Google Scholar 

  32. Horisberger M (1981) Scanning Electron Microsc II, 9–31

    Google Scholar 

  33. Hüttel R, Reinheimer H, Dietl H (1966) Chem Ber 99:462–468

    Google Scholar 

  34. Hüttel R, Forkl H (1972) Chem Ber 105:1664–1673

    Google Scholar 

  35. Kasai PH (1983) J Am Chem Soc 105:6704–6710

    Google Scholar 

  36. Gmelin-institut (1975) In: Gmelins Handbuch der Anorganischen Chemie Vol 62, Appendix 3, Verlag Chemie GmbH, Weinheim/Bergstr

    Google Scholar 

  37. Rich RL, Taube H (1954) J Phys Chem 58:6–11

    Google Scholar 

  38. Waters JH, Gray HB (1965) J Am Chem Soc 87:3534–3535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, S. Raman scatterings of colloidal silver and gold prepared in the presence of a nonionic surfactant, Surfynol 465. Colloid Polym Sci 274, 1161–1169 (1996). https://doi.org/10.1007/BF00655687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655687

Key words

Navigation