Skip to main content
Log in

Superconducting energy gaps and transition temperatures of quench-condensed cadmium and zinc films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The superconducting transition temperatures of Cd and Zn films deposited upon a liquid3He-cooled substrate increase compared to the bulk values. In disordered Cd, values of around 0.9 K are obtained, while correspondingT c for Zn is about 1.4 K. These values agree well with theoretically predicted ones. For a Cd0.9Ge0.1, probably amorphous, film,T c is further increased to about 1.6 K in approximate agreement with theory. The ratio between the energy gap andT c , 2Δ(0)/k B T c , remains considerably lower than 3.53 in all the disordered films. This, as well as fairly broad transition ranges and the shape of the fluctuation pairing contribution to the conductance, is taken as an indication of structural inhomogeneities of the films. In pure, quenchcondensed Mg films, no superconductivity is detected above 0.35 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 106, 162 (1957).

    Google Scholar 

  2. R. Mersevey and B. B. Schwartz, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 141.

    Google Scholar 

  3. Y. Wada,Rev. Mod. Phys. 36, 253 (1964).

    Google Scholar 

  4. H. Bülow and W. Buckel,Z. Physik 145, 141 (1956).

    Google Scholar 

  5. J. L. Robertson and B. A. Unvala, inProceedings of the Eighth Annual Solid State Physics Conference, Manchester, January, 1971, p. 151.

  6. S. Mader,J. Vac. Sci. Tech. 2, 35 (1965).

    Google Scholar 

  7. C. G. Granqvist and T. Claeson, to be published.

  8. G. B. Donaldson, inProceedings of the Tenth International Conference on Low Temperature Physics, Malkov, ed. (Vinti, Moscow, 1967), p. 291.

    Google Scholar 

  9. P. Kumbhare, thesis, Cornell University, 1967.

  10. H. V. Bohm and N. H. Horowitz, inProceedings of the Eighth International Conference on Low Temperature Physics, R. O. Davies, ed. (Butterworths, London, 1963), p. 191.

    Google Scholar 

  11. M. F. Lea, J. D. Llewellyn, D. R. Peck, and E. R. Dobbs, inProceedings of the Eleventh International Conference on Low Temperature Physics, J. F. Allen, D. M. Finlayson, and D. M. McCall, eds. (St. Andrews University Press, Scotland, 1969), p. 733.

    Google Scholar 

  12. W. Buckel,Z. Physik 138, 136 (1954).

    Google Scholar 

  13. W. Rühl,Z. Physik 138, 121 (1964).

    Google Scholar 

  14. W. Buckel and R. Hilsch,Z. Physik 138, 109 (1954).

    Google Scholar 

  15. J. D. Leslie, J. T. Chen, and T. T. Chen,Can. J. Phys. 48, 2783 (1970).

    Google Scholar 

  16. K. Knorr and N. Barth,J. Low Temp. Phys. 4, 469 (1971).

    Google Scholar 

  17. G. Bergmann,Phys. Rev. B3, 3797 (1971).

    Google Scholar 

  18. R. C. Dynes and J. M. Rowell,Phys. Rev. 187, 821 (1969).

    Google Scholar 

  19. W. L. McMillan,Phys. Rev. 167, 331 (1968).

    Google Scholar 

  20. R. C. Dynes,Solid State Commun. 10 615 (1972).

    Google Scholar 

  21. J. W. Garland, K. H. Bennemann, and F. M. Mueller,Phys. Rev. Letters 21, 1315 (1968).

    Google Scholar 

  22. J. W. Garland and P. W. Allen, inProceedings of the International Conference on the Science of Superconductivity, Stanford, August 1969, F. Chilton, ed. (North-Holland, Amsterdam, 1971), p. 669.

  23. P. B. Allen and M. L. Cohen,Phys. Rev. 187, 525 (1969).

    Google Scholar 

  24. T. L. Thorp, B. B. Triplett, W. D. Brewer, M. L. Cohen, N. E. Phillips, D. A. Shirley, J. E. Templeton, R. W. Stark, and P. H. Schmidt,J. Low Temp. Phys. 3, 589 (1970).

    Google Scholar 

  25. T. Claeson and H. L. Luo,J. Phys. Chem. Solids 27, 1081 (1966).

    Google Scholar 

  26. R. L. Falge, Jr.,Phys. Letters 24A, 579 (1967).

    Google Scholar 

  27. R. E. Glover III, S. Moser, and F. Baumann,J. Low Temp. Phys. 5, 519 (1971).

    Google Scholar 

  28. N. E. Alekseevskii and V. I. Tsebro,J. Low Temp. Phys. 4, 679 (1971).

    Google Scholar 

  29. F. J. Shore, V. L. Sailor, H. Marshak, and C. A. Reynolds,Rev. Sci. Instr. 31, 970 (1960).

    Google Scholar 

  30. S. János, L. Kovác, and A. Feher,Phys. Stat. Solidi (a)9, K153 (1972).

  31. J. M. Rowell, inTunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum Press, New York, 1969), p. 282.

    Google Scholar 

  32. J. G. Adler and J. E. Jackson,Rev. Sci. Instr. 37, 1049 (1966).

    Google Scholar 

  33. P. B. Allen, M. L. Cohen, L. M. Falicov, and R. V. Kasowski,Phys. Rev. Letters 21, 1794 (1968).

    Google Scholar 

  34. L. G. Azlamazov and A. I. Larkin,Phys. Letters 26A, 238 (1968).

    Google Scholar 

  35. L. G. Azlamazov and A. I. Larkin,Soviet Phys.—Solid State 10, 875 (1968).

    Google Scholar 

  36. B. W. Roberts,Superconductive Materials and Some of Their Properties, NBS Tech. Note 482, 1969.

  37. M. Hansen and K. Anderko,Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958), p. 418.

    Google Scholar 

  38. C. Kittel,Introduction to Solid State Physics 4th ed. (John Wiley and Sons, New York, 1971), p. 262.

    Google Scholar 

  39. American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963), pp. 4–172.

  40. W. L. McMillan and J. M. Rowell, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Chap. 11, p. 561.

    Google Scholar 

  41. T. Claeson and G. Grimvall,J. Phys. Chem. Solids 29, 387 (1968).

    Google Scholar 

  42. J. Klein and A. Leger,Phys. Letters 28A, 134 (1968).

    Google Scholar 

  43. J. P. Carbotte and R. C. Dynes,Phys. Letters 25A, 685 (1967).

    Google Scholar 

  44. C. G. Granqvist and T. Claeson,Phys. Letters 39A, 271 (1972).

    Google Scholar 

  45. R. E. Glover III, inProceedings of the International Conference on the Science of Superconductivity, Stanford, August 1969, F. Chilton, ed. (North-Holland, Amsterdam, 1971), p. 3.

  46. K. Maki,Progr. Theoret. Phys. (Kyoto)40, 193 (1968).

    Google Scholar 

  47. R. S. Thompson,Phys. Rev. B1, 327 (1970).

    Google Scholar 

  48. R. A. Craven, G. A. Thomas, and R. D. Parks,Phys. Rev. B4, 2185 (1971).

    Google Scholar 

  49. K. Kajimura and N. Mikoshiba,J. Low Temp. Phys. 4, 331 (1971).

    Google Scholar 

  50. G. Boato, M. Bugo, and C. Rizzuto,Nuovo Cimento 45B, 226 (1966).

    Google Scholar 

  51. F. W. Smith,J. Low Temp. Phys. 5, 683 (1971).

    Google Scholar 

  52. P. Kumbhare, P. M. Tedrow, and D. M. Lee,Bull. Am. Phys. Soc. 12, 77 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granqvist, C.G., Claeson, T. Superconducting energy gaps and transition temperatures of quench-condensed cadmium and zinc films. J Low Temp Phys 10, 735–750 (1973). https://doi.org/10.1007/BF00655462

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655462

Keywords

Navigation