Skip to main content
Log in

Order parameters and energies of analytic and singular vortex lines in rotating3He-A

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the expressions of the generalized Ginzburg-Landau (GL) theory for the free energy and the supercurrent in terms of thed vector, the magnetic fieldH, and operators containing the spatial gradient and the rotationΩ. These expressions are then specialized to the Anderson-Brinkman-Morel (ABM) state. We consider eight single-vortex lines of cylindrical symmetry and radiusR=[2/ℏ]−1/2: the Mermin-Ho vortex, a second analytic vortex, and six singular vortices, i.e., the orbital and radial disgyrations, the orbital and radial phase vortices, and two axial phase vortices. These eight vortex states are determined by solving the Euler-Lagrange equations whose solutions minimize the GL free energy functional. For increasing field, the core radius of the\(\hat l\) texture of the Mermin-Ho vortex tends to a limiting value, while the core radius of the\(\hat d\) texture goes to zero. The gap of the singular vortices behaves liker α forr → 0, where α ranges between\(\sqrt {1/2} \) and\(\sqrt {9/2} \). The energy of the radial disgyration becomes lower than that of the Mermin-Ho vortex for fieldsH≥6.5H*=6.5×25 G (atT=0.99T c and forR=10L*=60 µm, orω=2.9 rad/sec). ForR → 2ξ T T is the GL coherence length) orωω c2 (upper critical rotation speed), the energies of the singular vortices become lower than the energies of the analytic vortices. This is in agreement with the exact result of Schopohl for a vortex lattice atΩ c 2. Finally, we calculate the correction of order (1 -T/T c ) to the GL gap for the axial phase vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Schopohl and L. Tewordt,J. Low Temp. Phys. 41, 305 (1980).

    Google Scholar 

  2. M. C. Cross,J. Low Temp. Phys. 21, 525 (1975).

    Google Scholar 

  3. L. Neumann and L. Tewordt,Z. Phys. (Lpz)189, 55 (1966).

    Google Scholar 

  4. N. D. Mermin and T.-L. Ho,Phys. Rev. Lett. 36, 594 (1976).

    Google Scholar 

  5. L. J. Buchholtz and A. L. Fetter,Phys. Rev. B 15, 5225 (1977).

    Google Scholar 

  6. N. Schopohl,J. Low Temp. Phys. 41, 409 (1980).

    Google Scholar 

  7. T. Fujita, M. Nakahara, T. Ohmi, and Tsueneto,Progr. Theor. Phys. 60, 671 (1978).

    Google Scholar 

  8. M. Nakahara, T. Ohmi, T. Tsuneto, and T. Fujita,Progr. Theor. Phys. 62, 874 (1979); M. Nakahara and T. Ohmi,Progr. Theor. Phys. 61, 709 (1979).

    Google Scholar 

  9. G. E. Volovik and P. J. Hakonen,J. Low Temp. Phys. 42, 503 (1981).

    Google Scholar 

  10. M. R. Williams and A. L. Fetter,Phys. Rev. B 20, 169 (1979).

    Google Scholar 

  11. D. Vollhardt, Diplomarbeit, Hamburg (1977).

  12. J. Stoer and R. Bulirsch,Introduction to Numerical Analysis (Springer, Heidelberg, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passvogel, T., Schopohl, N., Warnke, M. et al. Order parameters and energies of analytic and singular vortex lines in rotating3He-A. J Low Temp Phys 46, 161–189 (1982). https://doi.org/10.1007/BF00655450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655450

Keywords

Navigation