Advertisement

Journal of Low Temperature Physics

, Volume 46, Issue 1–2, pp 37–51 | Cite as

Mechanism of the effect of the normal-superconducting transition on the amplitude-dependent damping and modulus defect in lead

  • Ya. M. Soifer
  • M. A. Golosovski
  • N. P. Kobelev
Article

Abstract

Measurements of the amplitude-dependent damping and modulus defect in lead of various purities in the normal and superconducting states were carried out at frequencies of 100 kHz and 5 MHz. It is found that the effect of the normal-superconducting (N-S) transition is different for the amplitude-dependent damping and the modulus defect, this difference being dependent on the purity of the specimens used and the frequency of the measurements. Two cases are observed. In the first the ratio of the amplitude-dependent damping to the corresponding modulus defect is the same in both the N and S states, and in the second the ratio is changed significantly at the N-S transition. It is shown that in the first case the damping is due to hysteretic loss alone and the N-S transition only changes the conditions of dislocation breakaway from the pinning points. In the second the dynamic loss contribution determined by the viscous drag of the dislocations to the total loss is essential and the N-S transition changes the magnitude of that contribution. A model is proposed to take into account the influence of viscous drag of the dislocations upon the amplitude-dependent damping and modulus defect. A method of evaluating of the dynamic contribution in the total loss is suggested. The results obtained are discussed in terms of existing models of the effect of the N-S transition on the conditions of dislocation breakaway and of the present model.

Keywords

Magnetic Material Present Model Total Loss Superconducting State Viscous Drag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Kaganov, V. Ya. Kravchenko, and V. D. Natsik,Usp. Fiz. Nauk III, 655 (1973).Google Scholar
  2. 2.
    W. P. Mason,Phys. Rev. 143, 229 (1966).Google Scholar
  3. 3.
    A. Hikata and C. Elbaum,Phys. Rev. Lett. 18, 750 (1967).Google Scholar
  4. 4.
    V. L. Indenbom and Yu. Z. Estrin,Phys. Stat. Sol. (a) 4, K37 (1971).Google Scholar
  5. 5.
    V. D. Natsik,Zh. Eksp. Teor. Fiz. 61, 2540 (1971).Google Scholar
  6. 6.
    A. V. Granato,Phys. Rev. Lett. 27, 660 (1971).Google Scholar
  7. 7.
    A. I. Landau,Fiz. Nizk. Temp. 5, 97 (1979).Google Scholar
  8. 8.
    G. Alers, O. Buck, and B. R. Tittmann.Phys. Rev. Lett. 23, 290 (1969).Google Scholar
  9. 9.
    V. E. Miloshenko, A. M. Roshupkin, and G. E. Shunin,Fiz. Tverd. Tela 19, 840 (1977).Google Scholar
  10. 10.
    A. M. Gabovich, L. G. Il'chenko, and E. A. Pachitski,Fiz. Nizk. Temp. 6, 298 (1980).Google Scholar
  11. 11.
    A. V. Granato and K. Lücke,J. Appl. Phys. 27, 583, 789 (1956).Google Scholar
  12. 12.
    D. H. Rogers,J. Appl. Phys. 33, 781 (1962).Google Scholar
  13. 13.
    N. P. Kobelev and Ya. M. Soifer,Fiz. Tverd. Tela 21, 1362 (1979).Google Scholar
  14. 14.
    M. A. Golosovski and Ya. M. Soifer,Fiz. Tverd. Tela 21, 2789 (1979).Google Scholar
  15. 15.
    Zh. S. Azhazha and A. I. Landau,Krist. und Tech. 10, 663 (1975).Google Scholar
  16. 16.
    O. S. Oen, D. K. Holmes, and M. T. Robinson, U.S.A. Atomic Energy Comm. Rept. ORNL-3017, 3 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Ya. M. Soifer
    • 1
  • M. A. Golosovski
    • 1
  • N. P. Kobelev
    • 1
  1. 1.Institute of Solid State PhysicsAcademy of Sciences of the USSRChernogolovkaUSSR

Personalised recommendations