Journal of Low Temperature Physics

, Volume 26, Issue 3–4, pp 637–657 | Cite as

Magnetic impurity ordering in dilute alloys

  • Yu. M. Ivanchenko
  • A. A. Lisyanskii


The interaction of conduction electrons with the ordered system of magnetic impurities randomly distributed in a normal metal is investigated in terms of the s-d exchange model. In the calculation of the electronic self-energy part the most divergent terms are summed. The internal exchange field arising due to the impurity ordering is determined in a self-consistent manner. It is shown that in the system under investigation the electron spectrum is greatly renormalized; in particular, the effective mass on the Fermi surface and also the low-temperature electronic heat capacity become several times larger. The addition to the electronic heat capacity has a broad temperature maximum and depends on the impurity concentration. The concentration and temperature dependences are qualitatively in good agreement with the experimental results. The mechanism responsible for the appearance of the long-range ferromagnetic interaction is also discussed.


Heat Capacity Magnetic Material Conduction Electron Effective Mass Electron Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Alloul and P. Bernier,Ann. Phys. 8, 169 (1973–1974).Google Scholar
  2. 2.
    R. Tournier,Low Temperature Physics—LT13 (Plenum, New York, 1974), Vol. 2, p. 257.Google Scholar
  3. 3.
    E. C. Hirschoff, O. G. Symko, and J. Wheatley,Phys. Lett. A33, 19 (1970);J. Low Temp. Phys. 5, 155 (1971).Google Scholar
  4. 4.
    J. C. Doran and O. G. Symko,Solid State Commun. 14, 719 (1974).Google Scholar
  5. 5.
    P. Steiner, G. N. Beloserskij, G. Ganuprecht, W. V. Zdrojewski, and S. Hunter,Solid State Commun. 14, 157 (1974).Google Scholar
  6. 6.
    M. A. Ruderman and C. Kittel,Phys. Rev. 96, 99 (1954); T. Kasuya,Prog. Theor. Phys. 16, 45 (1956); K. Yosida,Phys. Rev. 106, 893 (1957).Google Scholar
  7. 7.
    K. Matho and M. T. Beal-Monod,Phys. Rev. 5B, 1899 (1972).Google Scholar
  8. 8.
    Y. C. Tsay and M. W. Klein,Phys. Rev. 11B, 318 (1975).Google Scholar
  9. 9.
    M. W. Klein, L. Shen, and Y. C. Tsay,J. Low Temp. Phys. 19, 433 (1975).Google Scholar
  10. 10.
    J. Kondo,Prog. Theor. Phys. 32, 37 (1964).Google Scholar
  11. 11.
    A. I. Larkin and D. E. Khmelnitskii,Zh. Eksp. Teor. Fiz. 58, 1789 (1970); A. I. Larkin, V. I. Melnikov, and D. E. Khmelnitskii,Zh. Eksp. Teor. Fiz. 60, 846 (1971).Google Scholar
  12. 12.
    J. Kondo,Prog. Theor. Phys. 33, 575 (1965).Google Scholar
  13. 13.
    J. C. F. Brock, J. C. Ho, G. P. Schartz, and N. E. Phillips,Solid State Commun. 8, 1139 (1970).Google Scholar
  14. 14.
    R. J. Potton, D. F. Brewer, and D. J. Emerson,J. Low Temp. Phys. 9, 135 (1972).Google Scholar
  15. 15.
    F. W. Smith,Phys. Rev. 9B, 942 (1974).Google Scholar
  16. 16.
    A. A. Abrikosov,Usp. Fiz. Nauk 97, 403 (1969).Google Scholar
  17. 17.
    A. A. Abrikosov,Physics 2, 5 (1965).Google Scholar
  18. 18.
    E. I. Kondorskii, O. S. Galkina, and Yu. M. Borovikov,Zh. Eksp. Teor. Fiz. 61, 1564 (1971).Google Scholar
  19. 19.
    I. Ya. Korenblit and E. I. Shender,Zh. Eksp. Teor. Fiz. 69, 1112 (1975).Google Scholar
  20. 20.
    J. Kondo, inSolid State Physics, Vol. 23 (Academic Press, 1969).Google Scholar
  21. 21.
    N. N. Bogoliubov,Zh. Eksp. Teor. Fiz. 34, 58 (1958);Nuovo Cim. 7, 794 (1958).Google Scholar
  22. 22.
    S. V. Vonsovskii,Zh. Eksp. Teor. Fiz. 16, 981 (1946).Google Scholar
  23. 23.
    P. C. Martin and J. Schwinger,Phys. Rev. 115, 1342 (1959).Google Scholar
  24. 24.
    L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics (Benjamin, New York, 1962).Google Scholar
  25. 25.
    N. N. Bogoliubov, Quasiaverages in problems in statistical mechanics, Preprint of the Joint Institute of Nuclear Research, R-1451 (1963).Google Scholar
  26. 26.
    A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, New Jersey, 1964).Google Scholar
  27. 27.
    Yu. M. Ivanchenko and A. A. Lisyanskii,Zh. Eksp. Teor. Fiz. 66, 293 (1974).Google Scholar
  28. 28.
    P. W. Anderson,Mat. Res. Bull. 5, 549 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Yu. M. Ivanchenko
    • 1
  • A. A. Lisyanskii
    • 1
  1. 1.Donetsk Physico-Technical Institute of the Academy of Sciences of the Ukrainian SSRDonetskUSSR

Personalised recommendations